Javascript 无处不在的二分搜索

2024-04-19 22:52

本文主要是介绍Javascript 无处不在的二分搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        我们知道二分查找算法。二分查找是最容易正确的算法。我提出了一些我在二分搜索中收集的有趣问题。有一些关于二分搜索的请求。我请求您遵守准则:“我真诚地尝试解决问题并确保不存在极端情况”。阅读完每个问题后,最小化浏览器并尝试解决它。 
        问题陈述:给定一个由 N 个不同元素组成的排序数组,使用最少的比较次数在数组中找到一个键。 (您认为二分搜索是在排序数组中搜索键的最佳选择吗?)无需太多理论,这里是典型的二分搜索算法。

// Javascript code to implement the approach
 
 
// Returns location of key, or -1 if not found
function BinarySearch(A, l, r, key) {
  let m;
 
  while (l < r) {
    m = l + (r - l) / 2;
 
    if (A[m] == key) // first comparison
      return m;
 
    if (A[m] < key) // second comparison
      l = m + 1;
    else
      r = m - 1;
  }
 
  return -1;
}
 
// This code is contributed by gfgking 

        理论上,最坏情况下我们需要进行log N + 1次比较。如果我们观察的话,我们会在每次迭代中使用两次比较,除非最终成功匹配(如果有)。在实践中,比较将是昂贵的操作,它不仅仅是原始类型比较。尽量减少与理论极限的比较更为经济。请参阅下图,了解下一个实现中索引的初始化。 

以下实现使用较少的比较次数。  

// Invariant: A[l] <= key and A[r] > key
// Boundary: |r - l| = 1
// Input: A[l .... r-1]
function BinarySearch(A, l, r, key)
{
    let m;
 
    while( r - l > 1 )
    {
        m = l + (r-l)/2;
 
        if( A[m] <= key )
            l = m;
        else
            r = m;
    }
 
    if( A[l] == key )
        return l;
    if( A[r] == key )
        return r;
    else
        return -1;

        在 while 循环中,我们仅依赖于一次比较。搜索空间收敛到将l和r指向两个不同的连续元素。我们需要再进行一次比较来跟踪搜索状态。您可以查看示例测试用例 http://ideone.com/76bad0。 (C++11 代码)。

        问题陈述:给定一个由 N 个不同整数组成的数组,找到输入“key”的下限值。假设 A = {-1, 2, 3, 5, 6, 8, 9, 10} 且 key = 7,我们应该返回 6 作为结果。我们可以使用上面的优化实现来找到键的下限值。只要不变量成立,我们就不断地将左指针移到最右边。最终左指针指向小于或等于 key 的元素(根据定义下限值)。以下是可能的极端情况, —> 如果数组中的所有元素都小于 key,则左指针移动到最后一个元素。 —> 如果数组中的所有元素都大于 key,则为错误情况。 —> 如果数组中的所有元素都相等且 <= key,则这是我们实现的最坏情况输入。
这是示例: 

// largest value <= key
// Invariant: A[l] <= key and A[r] > key
// Boundary: |r - l| = 1
// Input: A[l .... r-1]
// Precondition: A[l] <= key <= A[r]
function Floor(A, l, r, key){
    let m;
    while(r - l > 1){
        m = l + parseInt((r-l)/2);
        if(A[m] <= key) l = m;
        else r = m;
    }
    return A[l];
}
 
// Initial call
function Floor(A, size, key)
{
    // Add error checking if key < A[0]
    if( key < A[0] )
        return -1;
  
    // Observe boundaries
    return Floor(A, 0, size, key);
}
 
// THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGAWRAL2852002) 

您可以看到一些测试用例 http://ideone.com/z0Kx4a。 

        问题陈述:给定一个可能有重复元素的排序数组。查找log N时间内输入“key”出现的次数。这里的想法是使用二分搜索查找数组中最左边和最右边出现的键。我们可以修改底函数来跟踪最右边的出现和最左边的出现。 
这是示例: 

// Input: Indices Range [l ... r)
// Invariant: A[l] <= key and A[r] > key
function getRightPosition(A, l, r, key) {
    while (r - l > 1) {
        const m = l + Math.floor((r - l) / 2);
        if (A[m] <= key) {
            l = m;
        } else {
            r = m;
        }
    }
    return l;
}
 
// Input: Indices Range (l ... r]
// Invariant: A[r] >= key and A[l] > key
function getLeftPosition(A, l, r, key) {
    while (r - l > 1) {
        const m = l + Math.floor((r - l) / 2);
        if (A[m] >= key) {
            r = m;
        } else {
            l = m;
        }
    }
    return r;
}
 
function countOccurrences(A, size, key) {
    // Observe boundary conditions
    let left = getLeftPosition(A, -1, size - 1, key);
    let right = getRightPosition(A, 0, size, key);
 
    // What if the element doesn't exist in the array?
    // The checks help to determine whether the element exists
 
    if (A[left] === key && key === A[right]) {
        return right - left + 1;
    }
    return 0;
}
 
// Example usage
const A = [1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6];
const key = 4;
const size = A.length;
const occurrences = countOccurrences(A, size, key);
console.log(`The number of occurrences of ${key} is: ${occurrences}`); 

示例代码 zn6R6a - Online C++0x Compiler & Debugging Tool - Ideone.com。   

        问题陈述: 给定一个由不同元素组成的排序数组,并且该数组在未知位置旋转。找到数组中的最小元素。我们可以在下图中看到示例输入数组的图示。

        我们收敛搜索空间直到l和r 指向单个元素。如果中间位置落在第一个脉冲中,则不满足条件 A[m] < A[r],我们将搜索空间收敛到 A[m+1 … r]。如果中间位置落在第二个脉冲中,则满足条件 A[m] < A[r],我们将搜索空间收敛到 A[1 … m]。在每次迭代中,我们都会检查搜索空间大小,如果它是 1,我们就完成了。
        下面给出的是算法的实现。 你能想出不同的实施方案吗?   

function BinarySearchIndexOfMinimumRotatedArray(A, l, r){
    // extreme condition, size zero or size two
    let m;
     
    // Precondition: A[l] > A[r]
    if(A[l] <= A[r]) return l;
     
    while(l <= r){
        // Termination condition (l will eventually falls on r, and r always
        // point minimum possible value)
        if(l == r) return l;
        m = l + (r-l)/2;
        if(A[m] < A[r]){
            // min can't be in the range
            // (m < i <= r), we can exclude A[m+1 ... r]
            r = m;
        }else{
            // min must be in the range (m < i <= r),
            // we must search in A[m+1 ... r]
            l = m+1;
        }
    }
    return -1;
}
 
function BinarySearchIndexOfMinimumRotatedArray(A, size){
    return BinarySearchIndexOfMinimumRotatedArray(A, 0, size-1);

 请参阅示例测试用例 KbwDrk - Online C++0x Compiler & Debugging Tool - Ideone.com。 

练习: 
1. 称为signum(x, y)的函数 定义为,

Signum(x, y) = -1 如果 x < y 
             = 0 如果 x = y 
             = 1 如果 x > y

您是否遇到过比较行为类似于符号函数的指令集?它能让二分搜索的第一个实现变得最优吗? 

2. 实现floor函数的ceil函数复制品。 

3. 与你的朋友讨论“二分查找是否是最优的(比较次数最少)?为什么不在排序数组上进行三元搜索或插值搜索?与二分搜索相比,您什么时候更喜欢三元搜索或插值搜索?” 

4. 画出二分搜索的树表示(相信我,这对你理解二分搜索的内部原理有很大帮助)。  

这篇关于Javascript 无处不在的二分搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918660

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys