python实现将数据标准化到指定区间[a,b]+正向标准化+负向标准化

2024-04-19 16:52

本文主要是介绍python实现将数据标准化到指定区间[a,b]+正向标准化+负向标准化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、公式介绍

(一)正向标准化公式

(二)负向标准化公式如下

(三)[a,b]取[0,1]的特例

二、构建数据集

三、自定义标准化函数 

四、正向标准化

五、负向标准化 

六、合并数据


一、公式介绍

将一列数据X标准化到指定区间[a,b]

(一)正向标准化公式

nor_X=(b-a)*(X-X_min)/(X_max-Xmin)+a

(二)负向标准化公式如下

nor_X=(b-a)*(Xmax-X)/(X_max-Xmin)+a

(三)[a,b]取[0,1]的特例

若[a,b]的取值为[0,1],

那么正向标准化公式就变为了如下:

nor_X=(X-X_min)/(X_max-Xmin)

负向标准化公式就变味了如下:

nor_X=(Xmax-X)/(X_max-Xmin)

也就是我们常用的在[0,1]区间的最大最小标准化

二、构建数据集

import pandas as pd
import numpy as np
#对医院进行综合分析
data=pd.DataFrame({'医院':['医院1', '医院2', '医院3', '医院4', '医院5', '医院6', '医院7', '医院8', '医院9', '医院10'],'门诊人数':[368107, 215654, 344914, 284220, 216042, 339841, 225785, 337457, 282917, 303455],'病床使用率%':[99.646, 101.961, 90.353, 80.39, 91.114, 98.766, 95.227, 88.157, 99.709, 101.392],'病死率%':[1.512, 1.574, 1.556, 1.739, 1.37, 1.205, 1.947, 1.848, 1.141, 1.308],'确诊符合率%':[99.108, 98.009, 99.226, 99.55, 99.411, 99.315, 99.397, 99.044, 98.889, 98.715],'平均住院日':[11.709, 11.24, 10.362, 12, 10.437, 10.929, 10.521, 11.363, 11.629, 11.328],'抢救成功率%':[86.657, 81.575, 79.79, 80.872, 76.024, 88.672, 87.369, 75.77, 78.589, 83.072]
})#令"医院"这一属性为索引列
data.set_index("医院",inplace=True)

三、自定义标准化函数 

def min_max_scaling(data, method='positive', feature_range=(0, 1)):'''Min-Max归一化处理参数:data (pd.DataFrame): 需要进行处理的数据框method (str): 归一化的方法,'positive' 为正向,'negative' 为逆向,默认为'positive'feature_range (tuple): 归一化后的最小最大值范围,默认为 (0, 1)返回:pd.DataFrame: 归一化后的数据框'''y_min, y_max = feature_range#y_min、y_max分别是归一化后数据的最小值 和最大值范围normalized_data = pd.DataFrame()#创建了一个名为normalized_data的空pandas DataFrame对象,可以向这个数据框中添加数据for col in data.columns:col_max = data[col].max()col_min = data[col].min()#获取DataFrame data 中每一列的最大值和最小值if method == 'negative':scaled_col = (y_max - y_min) * (col_max - data[col]) / (col_max - col_min) + y_min #这样是使数据映射到(y_min,y_max)区间#如果y_min=0,y_max=1,那么scaled_col = ((col_max - data[col]) / (col_max - col_min) 也就是到(0,1)区间的标准化映射了#下边的负向标准化同理#负向标准化elif method == 'positive':scaled_col = (y_max - y_min) * (data[col] - col_min) / (col_max - col_min) + y_min#正向标准化normalized_data[col] = scaled_col#将标准化后的数据增加到上边创建的空数据框中return normalized_data
#返回标准化后的数据框

四、正向标准化

由数据可知,['门诊人数', '病床使用率%', '确诊符合率%', '抢救成功率%']这四列数据应该是正向指标,即数值越大越好。

# 正向指标标准化
positive_cols = ['门诊人数', '病床使用率%', '确诊符合率%', '抢救成功率%']
positive_normalized = min_max_scaling(data[positive_cols], method='positive', feature_range=(0.002, 1))
# positive_normalized = min_max_scaling(data[positive_cols], method='positive', feature_range=(0, 1))

将数据进行标准化的区间为[0.002,1]

五、负向标准化 

 由数据可知,['病死率%', '平均住院日']这四列数据应该是负向指标,即数值越小越好。

# 负向指标标准化
negative_cols = ['病死率%', '平均住院日']
negative_normalized = min_max_scaling(data[negative_cols], method='negative', feature_range=(0.002, 1))
# negative_normalized = min_max_scaling(data[negative_cols], method='negative', feature_range=(0, 1))

六、合并数据

# 数据合并且保持顺序
combined_normalized_data = positive_normalized.join(negative_normalized)
# combined_normalized_data = combined_normalized_data[data.columns]
# combined_normalized_data.index = data.index

这篇关于python实现将数据标准化到指定区间[a,b]+正向标准化+负向标准化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918111

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及