python实现将数据标准化到指定区间[a,b]+正向标准化+负向标准化

2024-04-19 16:52

本文主要是介绍python实现将数据标准化到指定区间[a,b]+正向标准化+负向标准化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、公式介绍

(一)正向标准化公式

(二)负向标准化公式如下

(三)[a,b]取[0,1]的特例

二、构建数据集

三、自定义标准化函数 

四、正向标准化

五、负向标准化 

六、合并数据


一、公式介绍

将一列数据X标准化到指定区间[a,b]

(一)正向标准化公式

nor_X=(b-a)*(X-X_min)/(X_max-Xmin)+a

(二)负向标准化公式如下

nor_X=(b-a)*(Xmax-X)/(X_max-Xmin)+a

(三)[a,b]取[0,1]的特例

若[a,b]的取值为[0,1],

那么正向标准化公式就变为了如下:

nor_X=(X-X_min)/(X_max-Xmin)

负向标准化公式就变味了如下:

nor_X=(Xmax-X)/(X_max-Xmin)

也就是我们常用的在[0,1]区间的最大最小标准化

二、构建数据集

import pandas as pd
import numpy as np
#对医院进行综合分析
data=pd.DataFrame({'医院':['医院1', '医院2', '医院3', '医院4', '医院5', '医院6', '医院7', '医院8', '医院9', '医院10'],'门诊人数':[368107, 215654, 344914, 284220, 216042, 339841, 225785, 337457, 282917, 303455],'病床使用率%':[99.646, 101.961, 90.353, 80.39, 91.114, 98.766, 95.227, 88.157, 99.709, 101.392],'病死率%':[1.512, 1.574, 1.556, 1.739, 1.37, 1.205, 1.947, 1.848, 1.141, 1.308],'确诊符合率%':[99.108, 98.009, 99.226, 99.55, 99.411, 99.315, 99.397, 99.044, 98.889, 98.715],'平均住院日':[11.709, 11.24, 10.362, 12, 10.437, 10.929, 10.521, 11.363, 11.629, 11.328],'抢救成功率%':[86.657, 81.575, 79.79, 80.872, 76.024, 88.672, 87.369, 75.77, 78.589, 83.072]
})#令"医院"这一属性为索引列
data.set_index("医院",inplace=True)

三、自定义标准化函数 

def min_max_scaling(data, method='positive', feature_range=(0, 1)):'''Min-Max归一化处理参数:data (pd.DataFrame): 需要进行处理的数据框method (str): 归一化的方法,'positive' 为正向,'negative' 为逆向,默认为'positive'feature_range (tuple): 归一化后的最小最大值范围,默认为 (0, 1)返回:pd.DataFrame: 归一化后的数据框'''y_min, y_max = feature_range#y_min、y_max分别是归一化后数据的最小值 和最大值范围normalized_data = pd.DataFrame()#创建了一个名为normalized_data的空pandas DataFrame对象,可以向这个数据框中添加数据for col in data.columns:col_max = data[col].max()col_min = data[col].min()#获取DataFrame data 中每一列的最大值和最小值if method == 'negative':scaled_col = (y_max - y_min) * (col_max - data[col]) / (col_max - col_min) + y_min #这样是使数据映射到(y_min,y_max)区间#如果y_min=0,y_max=1,那么scaled_col = ((col_max - data[col]) / (col_max - col_min) 也就是到(0,1)区间的标准化映射了#下边的负向标准化同理#负向标准化elif method == 'positive':scaled_col = (y_max - y_min) * (data[col] - col_min) / (col_max - col_min) + y_min#正向标准化normalized_data[col] = scaled_col#将标准化后的数据增加到上边创建的空数据框中return normalized_data
#返回标准化后的数据框

四、正向标准化

由数据可知,['门诊人数', '病床使用率%', '确诊符合率%', '抢救成功率%']这四列数据应该是正向指标,即数值越大越好。

# 正向指标标准化
positive_cols = ['门诊人数', '病床使用率%', '确诊符合率%', '抢救成功率%']
positive_normalized = min_max_scaling(data[positive_cols], method='positive', feature_range=(0.002, 1))
# positive_normalized = min_max_scaling(data[positive_cols], method='positive', feature_range=(0, 1))

将数据进行标准化的区间为[0.002,1]

五、负向标准化 

 由数据可知,['病死率%', '平均住院日']这四列数据应该是负向指标,即数值越小越好。

# 负向指标标准化
negative_cols = ['病死率%', '平均住院日']
negative_normalized = min_max_scaling(data[negative_cols], method='negative', feature_range=(0.002, 1))
# negative_normalized = min_max_scaling(data[negative_cols], method='negative', feature_range=(0, 1))

六、合并数据

# 数据合并且保持顺序
combined_normalized_data = positive_normalized.join(negative_normalized)
# combined_normalized_data = combined_normalized_data[data.columns]
# combined_normalized_data.index = data.index

这篇关于python实现将数据标准化到指定区间[a,b]+正向标准化+负向标准化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918111

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同