python实现将数据标准化到指定区间[a,b]+正向标准化+负向标准化

2024-04-19 16:52

本文主要是介绍python实现将数据标准化到指定区间[a,b]+正向标准化+负向标准化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、公式介绍

(一)正向标准化公式

(二)负向标准化公式如下

(三)[a,b]取[0,1]的特例

二、构建数据集

三、自定义标准化函数 

四、正向标准化

五、负向标准化 

六、合并数据


一、公式介绍

将一列数据X标准化到指定区间[a,b]

(一)正向标准化公式

nor_X=(b-a)*(X-X_min)/(X_max-Xmin)+a

(二)负向标准化公式如下

nor_X=(b-a)*(Xmax-X)/(X_max-Xmin)+a

(三)[a,b]取[0,1]的特例

若[a,b]的取值为[0,1],

那么正向标准化公式就变为了如下:

nor_X=(X-X_min)/(X_max-Xmin)

负向标准化公式就变味了如下:

nor_X=(Xmax-X)/(X_max-Xmin)

也就是我们常用的在[0,1]区间的最大最小标准化

二、构建数据集

import pandas as pd
import numpy as np
#对医院进行综合分析
data=pd.DataFrame({'医院':['医院1', '医院2', '医院3', '医院4', '医院5', '医院6', '医院7', '医院8', '医院9', '医院10'],'门诊人数':[368107, 215654, 344914, 284220, 216042, 339841, 225785, 337457, 282917, 303455],'病床使用率%':[99.646, 101.961, 90.353, 80.39, 91.114, 98.766, 95.227, 88.157, 99.709, 101.392],'病死率%':[1.512, 1.574, 1.556, 1.739, 1.37, 1.205, 1.947, 1.848, 1.141, 1.308],'确诊符合率%':[99.108, 98.009, 99.226, 99.55, 99.411, 99.315, 99.397, 99.044, 98.889, 98.715],'平均住院日':[11.709, 11.24, 10.362, 12, 10.437, 10.929, 10.521, 11.363, 11.629, 11.328],'抢救成功率%':[86.657, 81.575, 79.79, 80.872, 76.024, 88.672, 87.369, 75.77, 78.589, 83.072]
})#令"医院"这一属性为索引列
data.set_index("医院",inplace=True)

三、自定义标准化函数 

def min_max_scaling(data, method='positive', feature_range=(0, 1)):'''Min-Max归一化处理参数:data (pd.DataFrame): 需要进行处理的数据框method (str): 归一化的方法,'positive' 为正向,'negative' 为逆向,默认为'positive'feature_range (tuple): 归一化后的最小最大值范围,默认为 (0, 1)返回:pd.DataFrame: 归一化后的数据框'''y_min, y_max = feature_range#y_min、y_max分别是归一化后数据的最小值 和最大值范围normalized_data = pd.DataFrame()#创建了一个名为normalized_data的空pandas DataFrame对象,可以向这个数据框中添加数据for col in data.columns:col_max = data[col].max()col_min = data[col].min()#获取DataFrame data 中每一列的最大值和最小值if method == 'negative':scaled_col = (y_max - y_min) * (col_max - data[col]) / (col_max - col_min) + y_min #这样是使数据映射到(y_min,y_max)区间#如果y_min=0,y_max=1,那么scaled_col = ((col_max - data[col]) / (col_max - col_min) 也就是到(0,1)区间的标准化映射了#下边的负向标准化同理#负向标准化elif method == 'positive':scaled_col = (y_max - y_min) * (data[col] - col_min) / (col_max - col_min) + y_min#正向标准化normalized_data[col] = scaled_col#将标准化后的数据增加到上边创建的空数据框中return normalized_data
#返回标准化后的数据框

四、正向标准化

由数据可知,['门诊人数', '病床使用率%', '确诊符合率%', '抢救成功率%']这四列数据应该是正向指标,即数值越大越好。

# 正向指标标准化
positive_cols = ['门诊人数', '病床使用率%', '确诊符合率%', '抢救成功率%']
positive_normalized = min_max_scaling(data[positive_cols], method='positive', feature_range=(0.002, 1))
# positive_normalized = min_max_scaling(data[positive_cols], method='positive', feature_range=(0, 1))

将数据进行标准化的区间为[0.002,1]

五、负向标准化 

 由数据可知,['病死率%', '平均住院日']这四列数据应该是负向指标,即数值越小越好。

# 负向指标标准化
negative_cols = ['病死率%', '平均住院日']
negative_normalized = min_max_scaling(data[negative_cols], method='negative', feature_range=(0.002, 1))
# negative_normalized = min_max_scaling(data[negative_cols], method='negative', feature_range=(0, 1))

六、合并数据

# 数据合并且保持顺序
combined_normalized_data = positive_normalized.join(negative_normalized)
# combined_normalized_data = combined_normalized_data[data.columns]
# combined_normalized_data.index = data.index

这篇关于python实现将数据标准化到指定区间[a,b]+正向标准化+负向标准化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918111

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控