算法练习第20天|回溯算法 77.组合问题 257. 二叉树的所有路径

2024-04-19 10:20

本文主要是介绍算法练习第20天|回溯算法 77.组合问题 257. 二叉树的所有路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.什么是回溯算法?

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。其本质是穷举,穷举所有可能,然后选出我们想要的答案。

2.为什么要有回溯算法?

那么既然回溯法并不高效为什么还要用它呢?

因为有的问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。比如下面这几类问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等。

 3.如何理解回溯算法?

回溯法解决的问题都可以抽象为树形结构,是的,是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树的深度。所以回溯和递归是分不开的

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

4.回溯算法模板 

类似递归算法的三部曲,回溯算法也有三部曲。

  • 第一步:确认回溯函数的参数及返回值。返回值类型一般为void。但是参数不想二叉树递归那样好确定,所以一般先写逻辑,根据回溯代码逻辑的需要再添加相应参数。回溯函数大致长这样:
void backtracking(参数)
  • 第二步:确认回溯函数的终止条件。既然回溯函数的问题可以等效为树形结构,那么就会遍历树形结构就一定会有终止条件。因此回溯也有终止条件。一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。所以终止条件的伪代码如下:
if (终止条件) {存放结果;return;
}
  • 第三步:确认单层回溯的遍历过程

由于回溯一般是在集合中进行递归搜索,集合的大小构成了树的宽度,递归的深度构成了树的深度。如图所示:

回溯函数遍历过程伪代码如下:

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果
}

for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。

backtracking这里自己调用自己,实现递归。

 整体框架如下:

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

 力扣题目77.组合

77. 组合 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/combinations/description/

题目描述:

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

示例 1:

输入:n = 4, k = 2
输出:
[[2,4],[3,4],[2,3],[1,2],[1,3],[1,4],
]

示例 2:

输入:n = 1, k = 1
输出:[[1]]

思路分析:

最直接的方法就是简单粗暴的双层循环(假设n=4,k=2):

int n = 4;
for (int i = 1; i <= n; i++) {for (int j = i + 1; j <= n; j++) {cout << i << " " << j << endl;}
}

这种k为2时就只用双层循环就行了,但是如果k=50,100?自己要写50层、100层循环就不太现实了。所以这个时候就可以使用回溯了。过程示意如图所示:

图中可以发现n相当于树的宽度,k相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

回溯解法:

来遍历的过程中,会找到复合要求的子集合,还要有记录这些子集合的结果大集合,所以下定义这两个记录结果的vector:

vector<vector<int>> result;  //用于存放组合的集合
vector<int> path; //用于存放复合条件的当前组合

 下面按照回溯三部曲来进行回溯函数的实现:

  • 第一步,确认回溯函数的参数以及返回值。

        返回值为void,函数的参数为n,k。初次之外,为了更有逻辑的进行穷举,我们再设置一个startIndex,表示本次回溯从【1,2,..., n】的哪里开始遍历元素。所以回溯函数长这样:

void backtracking(int n, int k, int startIndex){
}
  •  第二步,确认回溯的终止条件。根据题意,当记录当前组合的path有了k个元素,即本次回溯就可以终止了,要保存当前结果然后返回。

        具体回溯终止条件长这样: 

//回溯第二步:确认回溯函数的终止条件
if(path.size() == k)  //取得一个k长的组合
{result.push_back(path);return;
}
  •  第三步,确认单层回溯函数的遍历过程,即再回溯中需要做哪些事情?

 根据上述伪代码,需要做三件事:1.在当前层处理节点,即将没遍历过程的元素记录一下;2.递归,从刚刚记录过的元素的下一个元素继续进行该过程,直到条件满足代码返回该递归处;3.弹出刚才最后记录的元素,相当于组合的结果返回来到了上一层的分支处(即通过绿色剪头回溯到示意图中的第二层):

 代码如下:

//我要从startIndex往后开始遍历,将得到的节点元素存放在path中
for(int i = startIndex; i <= n; ++i)
{//处理节点path.push_back(i);//递归回溯函数,开始找下一个元素并添加到path中backtracking(n, k, i+1);//回溯,返回上一层path.pop_back();
}

整体代码如下:

class Solution {
public:vector<vector<int>> result;  //用于存放组合的集合vector<int> path; //用于存放复合条件的组合//回溯第一步:确认回溯函数的参数及返回值,//startIndex用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )void backtracking(int n, int k, int startIndex){//回溯第二步:确认回溯函数的终止条件if(path.size() == k)  //取得一个k长的组合{result.push_back(path);return;}    //回溯第三步:确认单层回溯的遍历过程。//我要从startIndex往后开始遍历,将得到的节点元素存放在path中for(int i = startIndex; i <= n; ++i){//处理节点path.push_back(i);//递归回溯函数,开始找下一个元素并添加到path中backtracking(n, k, i+1);//回溯,返回上一层path.pop_back();}}//力扣提供的接口函数vector<vector<int>> combine(int n, int k) {backtracking(n,k,1);return result;}
};

从上述代码来理解,回溯算法的第三步中的递归,会一直执行,直到满足组合满足要求,然后会逐层进行回溯。

同样的回溯思想也可以解下面这道题。 

257. 二叉树的所有路径

257. 二叉树的所有路径 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/binary-tree-paths/description/

题目描述:

给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。

叶子节点 是指没有子节点的节点。

示例 1:

输入:root = [1,2,3,null,5]
输出:["1->2->5","1->3"]

示例 2:

输入:root = [1]
输出:["1"]

思路分析:

因为要记录根节点到叶子节点的路径,所以二叉树的遍历方式应该为前序遍历,这样才是正确的路径顺序。遍历和和回溯的过程如下图所示,数字表示先后步骤。

下面我们先使用递归的方式,来做前序遍历,然后在递归中使用回溯

递归+回溯解法:

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:void traversal(TreeNode* cur, vector<int>& path, vector<string> & result){//中path.push_back(cur->val);// 递归终止条件:这才到了叶子节点if (cur->left == NULL && cur->right == NULL) {string sPath;for (int i = 0; i < path.size() - 1; i++) {sPath += to_string(path[i]);sPath += "->";}sPath += to_string(path[path.size() - 1]);result.push_back(sPath);return;}if (cur->left) { // 左 traversal(cur->left, path, result);path.pop_back(); // 回溯}if (cur->right) { // 右traversal(cur->right, path, result);path.pop_back(); // 回溯}}vector<string> binaryTreePaths(TreeNode* root) {vector<string> result;  //记录路径的集合vector<int> path;  //记录路径中的元素if (root == nullptr) return result;traversal(root, path, result);return result;}

不使用额外的递归函数的写法:

class Solution {
public:vector<string> result;  //记录路径的集合vector<int> path;  //记录路径中的元素//前序递归第一步:确认递归函数的参数和返回值vector<string> binaryTreePaths(TreeNode* root) {if (root == nullptr) return result;path.push_back(root->val);  //中,先记录一下当前节点元素//递归函数第二步:确认递归终止条件。找到叶子节点才算遍历结束if(root->left == nullptr && root->right == nullptr) {//一旦找到叶子节点,我们就需要打印该路径string singlePath;for(int i = 0; i < path.size()-1; i++)  //从前往后提取路径“1-》2-》3”{singlePath += to_string(path[i]);  //元素数字转字符串singlePath += "->";}singlePath += to_string(path[path.size()-1]); //最后一个元素result.push_back(singlePath);  //记录该路径return result;} //递归第三步:确认单层递归逻辑。处了记录当前节点元素,接下来就是递归遍历左右子树了。//但是为了更方便的生成结果所需的字符串,我们将记录当前节点的步骤放在了函数的开头。//如果我们在这里记录当前节点元素,那么上面的递归终止条件返回的路径结果将会缺少最后一个元素//左if(root->left){binaryTreePaths(root->left); //递归遍历左子树path.pop_back();  //回溯,返回上一层对应的根节点,准备向右子树遍历}//右if(root->right){binaryTreePaths(root->right); //递归遍历右子树path.pop_back();  //回溯}return result;}};

这篇关于算法练习第20天|回溯算法 77.组合问题 257. 二叉树的所有路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917268

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关