踏上R语言之旅:解锁数据世界的神秘密码(一)

2024-04-19 09:12

本文主要是介绍踏上R语言之旅:解锁数据世界的神秘密码(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

R语言学习


文章目录

  • R语言学习
  • 数据矩阵与R语言表示
    • 1.创建一个向量(随机变量、一维数组)
    • 2.创建一个矩阵(二维数组)
    • 3.矩阵转置
    • 4.矩阵相加减
    • 5.矩阵相乘
    • 6.矩阵对角元素相关运算
    • 7.矩阵求逆
    • 8.矩阵的特征值与特征向量
    • 9.矩阵的Choleskey分解
    • 10.矩阵奇异值分解
    • 11.矩阵QR分解
    • 12.矩阵kronecker积
    • 13.矩阵的维数
    • 14.矩阵的行和、列和、行平均与列平均
  • 总结


数据矩阵与R语言表示

1.创建一个向量(随机变量、一维数组)

在R中可以用函数c()来创建一个向量,例如

>x1=c(171,175,159,155,152,158,154,164,168,166,159,164)
> x2=c(57,64,41,38,35,44,41,51,57,49,47,46)

这里,x1,x2分别为行向量,也可以认为是1行12列的矩阵。
函数length()可以返回向量的长度,mode()可以返回向量的数据类型,例如:

> length(x1)
[1] 12
> mode(x1)
[1] "numeric"

2.创建一个矩阵(二维数组)

(1)合并命令。可以用rbind()cbind()将两个以上的向量或矩阵合并起来,

rbind()表示按行合并,cbind()则表示按列合并。

> rbind(x1,x2)[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
x1  171  175  159  155  152  158  154  164  168   166   159   164
x2   57   64   41   38   35   44   41   51   57    49    47    46
> cbind(x1,x2)x1 x2[1,] 171 57[2,] 175 64[3,] 159 41[4,] 155 38[5,] 152 35[6,] 158 44[7,] 154 41[8,] 164 51[9,] 168 57
[10,] 166 49
[11,] 159 47
[12,] 164 46

(2)生成矩阵。在R中可以用函数matrix()来创建一个矩阵,引用该函数时需要输入必要的参数值。

> matrix(data=NA,nrow=1,ncol=1,byrow=FALSE,dimnames=NULL)[,1]
[1,]   NA

data项为必要的矩阵元素,nrow为行数,ncol为列数,注意nrow与ncol的乘积应为矩阵元素个数,byrow项控制排列元素时是否按行进行,dimnames给定行和列的名称,例如:

 matrix(x1,nrow=3,ncol=4)[,1] [,2] [,3] [,4]
[1,]  171  155  154  166
[2,]  175  152  164  159
[3,]  159  158  168  164
 matrix(x1,nrow=4,ncol=3)[,1] [,2] [,3]
[1,]  171  152  168
[2,]  175  158  166
[3,]  159  154  159
[4,]  155  164  164
 matrix(x1,nrow=4,ncol=3,byrow=T)[,1] [,2] [,3]
[1,]  171  175  159
[2,]  155  152  158
[3,]  154  164  168
[4,]  166  159  164

3.矩阵转置

A为mxn矩阵,A’为其转置矩阵,求A’在R中可用函数t(),例如:

> A=matrix(1:12,nrow=3,ncol=4)
> A[,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> t(A)[,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12

4.矩阵相加减

在R中对同行同列矩阵相加减,可用符号“+”、“-”,例如:

> A=B=matrix(1:12,nrow=3,ncol=4)
> A+B[,1] [,2] [,3] [,4]
[1,]    2    8   14   20
[2,]    4   10   16   22
[3,]    6   12   18   24
> A-B[,1] [,2] [,3] [,4]
[1,]    0    0    0    0
[2,]    0    0    0    0
[3,]    0    0    0    0

5.矩阵相乘

A为mxn矩阵,B为nxk矩阵,在R中求AB可用符号“%*%",例如:

> A=matrix(1:12,nrow=3,ncol=4)
> B=matrix(1:12,nrow=4,ncol=3)
> A%*%B[,1] [,2] [,3]
[1,]   70  158  246
[2,]   80  184  288
[3,]   90  210  330

6.矩阵对角元素相关运算

若要取一个方阵的对角元素,对一个向量应用diag()函数将产生以这个向量为对角元素的对角矩阵,对一个正整数k应用diag()函数将产生k维单位矩阵,例如:

> A=matrix(1:16,nrow=4,ncol=4)
> diag(A)
[1]  1  6 11 16
> diag(diag(A))[,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    6    0    0
[3,]    0    0   11    0
[4,]    0    0    0   16
> diag(4)[,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1

7.矩阵求逆

矩阵求逆可用solve(),应用solve(A,b)运算结果可解线性方程组Ax=b,若b缺省,则系统默认为单位矩阵,由此可用其进行矩阵求逆,例如:

> A=matrix(rnorm(16),4,4);
> A[,1]       [,2]        [,3]       [,4]
[1,] -0.2930984 -1.7887997 -0.13792868  0.8021037
[2,] -1.3322062  0.3419297  1.18732716 -1.8372907
[3,]  1.0203442 -2.4283146  0.03727872 -2.4674615
[4,] -0.9507527  0.6046697 -0.79238198 -0.1241637
> solve(A)[,1]        [,2]       [,3]        [,4]
[1,] -0.35916036 -0.30123211  0.1268138 -0.38288995
[2,] -0.39760300 -0.02206908 -0.1143649  0.03076075
[3,]  0.08927873  0.35986115 -0.2013035 -0.74780287
[4,]  0.24412384 -0.09740967 -0.2433257 -0.19990320

8.矩阵的特征值与特征向量

矩阵A的谱分解为A=UΛU’,其中Λ是由A的特征值组成的对角矩阵,U的列为A的特征值对应的特征向量,在R中可以用函数eigen()得到U和Λ。

eigen(x,symmetric,only.values=FALSE,EISPACK=FALSE)

其中,x为矩阵,symmetric项指定矩阵x是否为对称矩阵,若不指定,系统将自动检测x是否为对称矩阵,例如:

> A=diag(4)+1;A;[,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2
> A.e=eigen(A,symmetric=T)
> A.e
eigen() decomposition
$values
[1] 5 1 1 1$vectors[,1]       [,2]       [,3]       [,4]
[1,] -0.5  0.8660254  0.0000000  0.0000000
[2,] -0.5 -0.2886751 -0.5773503 -0.5773503
[3,] -0.5 -0.2886751 -0.2113249  0.7886751
[4,] -0.5 -0.2886751  0.7886751 -0.2113249> A.e$vector%*%diag(A.e$values)%*%t(A.e$vectors)[,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2

上面最后的语句作用是重构原始矩阵,其中 A.e$vector 是原始矩阵的特征向量,diag(A.e$values) 是一个以特征值为对角线元素的对角矩阵,t(A.e$vectors) 是特征向量的转置矩阵。

9.矩阵的Choleskey分解

对于正定矩阵A,可对其进行Choleskey分解,即A=P’P,其中,P为上三角矩阵,在R中可以用函数chol()进行Choleskey分解,例如:

> A.c=chol(A)
> A.c[,1]      [,2]      [,3]      [,4]
[1,] 1.414214 0.7071068 0.7071068 0.7071068
[2,] 0.000000 1.2247449 0.4082483 0.4082483
[3,] 0.000000 0.0000000 1.1547005 0.2886751
[4,] 0.000000 0.0000000 0.0000000 1.1180340
> t(A.c)%*%A.c[,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2

10.矩阵奇异值分解

A为mxn矩阵,rank(A)=r,可以分解为A=UDV’,其中,U’U=V’V=I。在R中可以用函数svd()进行奇异值分解,例如:

> A=matrix(1:18,3,6);A;[,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    4    7   10   13   16
[2,]    2    5    8   11   14   17
[3,]    3    6    9   12   15   18
> A.s=svd(A)
> A.s
$d
[1] 4.589453e+01 1.640705e+00 1.366522e-15$u[,1]        [,2]       [,3]
[1,] -0.5290354  0.74394551  0.4082483
[2,] -0.5760715  0.03840487 -0.8164966
[3,] -0.6231077 -0.66713577  0.4082483$v[,1]        [,2]       [,3]
[1,] -0.07736219 -0.71960032 -0.4076688
[2,] -0.19033085 -0.50893247  0.5745647
[3,] -0.30329950 -0.29826463 -0.0280114
[4,] -0.41626816 -0.08759679  0.2226621
[5,] -0.52923682  0.12307105 -0.6212052
[6,] -0.64220548  0.33373889  0.2596585> A.s$u%*%diag(A.s$d)%*%t(A.s$v)[,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    4    7   10   13   16
[2,]    2    5    8   11   14   17
[3,]    3    6    9   12   15   18

11.矩阵QR分解

A为mxn矩阵时可以进行QR分解,A=QR,其中,Q’Q=I,在R中可以用函数qr()进行QR分解,例如:

> A=matrix(1:16,4,4)
> qr(A)
$qr[,1]        [,2]          [,3]          [,4]
[1,] -5.4772256 -12.7801930 -2.008316e+01 -2.738613e+01
[2,]  0.3651484  -3.2659863 -6.531973e+00 -9.797959e+00
[3,]  0.5477226  -0.3781696  1.601186e-15  2.217027e-15
[4,]  0.7302967  -0.9124744 -5.547002e-01 -1.478018e-15$rank
[1] 2$qraux
[1] 1.182574e+00 1.156135e+00 1.832050e+00 1.478018e-15$pivot
[1] 1 2 3 4attr(,"class")
[1] "qr"

12.矩阵kronecker积

nxm矩阵A与hxk矩阵B的kronecker积为一个nhxmk维矩阵,在R中,kronecker积可以用函数kronecker()来计算,例如:

> A=matrix(1:4,2,2)
> A[,1] [,2]
[1,]    1    3
[2,]    2    4
> B=matrix(rep(1,4),2,2);B;[,1] [,2]
[1,]    1    1
[2,]    1    1
> kronecker(A,B)[,1] [,2] [,3] [,4]
[1,]    1    1    3    3
[2,]    1    1    3    3
[3,]    2    2    4    4
[4,]    2    2    4    4

13.矩阵的维数

在R中很容易得到一个矩阵的维数,函数dim()将返回一个矩阵的维数,nrow()返回行数,ncol()返回列数,例如:

> A=matrix(1:12,3,4)
> dim(A)
[1] 3 4
> nrow(A)
[1] 3
> ncol(A)
[1] 4

14.矩阵的行和、列和、行平均与列平均

一个矩阵的和、平均数以及列的和、平均数,例如:
rowSums() rowMeans() colSums() colMeans()

> rowSums(A)
[1] 22 26 30
> rowMeans(A)
[1] 5.5 6.5 7.5
> colSums(A)
[1]  6 15 24 33
> colMeans(A)
[1]  2  5  8 11
> A[,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

上述关于矩阵行和列的操作,还可以使用apply()函数实现:

apply(X,MARGIN,FUN,…)
其中,X为矩阵,MARGIN用来指定是对行运算还是对列运算,MARGIN=1表示对行运算,MARGIN=2表示对列运算,FUN用来指定运算函数,”…"用来给定FUN中需要的其他参数,例如:

> apply(A,1,sum)
[1] 22 26 30
> apply(A,1,mean)
[1] 5.5 6.5 7.5
> apply(A,2,sum)
[1]  6 15 24 33
> apply(A,2,mean)
[1]  2  5  8 11

apply()函数还可以对矩阵的行或列进行其他运算,例如计算每一列的方差:

> A=matrix(rnorm(10),2,5)
> apply(A,2,var)
[1] 0.06233338 1.72555863 0.45365134 0.83043694 0.37709323
> apply(A,2,function(x,a)x*a,a=2)[,1]      [,2]       [,3]       [,4]       [,5]
[1,] -2.437330 -1.090969 -1.5564223  1.9951652  0.3086047
[2,] -1.731167  2.624468  0.3486265 -0.5823327 -1.4282735

注:最后一式与A*2效果一致,旨在说明如何应用apply函数

总结

主要运用的是线性代数里面所涉及到的知识,不得不说,R语言所包含的函数着实比较丰富,所学知识取自王斌会老师的《多元统计分析及R语言建模》,上述内容均本人手敲,创作不易,收获不浅,继续加油!

这篇关于踏上R语言之旅:解锁数据世界的神秘密码(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917128

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL修改密码的四种实现方式

《MySQL修改密码的四种实现方式》文章主要介绍了如何使用命令行工具修改MySQL密码,包括使用`setpassword`命令和`mysqladmin`命令,此外,还详细描述了忘记密码时的处理方法,包... 目录mysql修改密码四种方式一、set password命令二、使用mysqladmin三、修改u

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑