踏上R语言之旅:解锁数据世界的神秘密码(一)

2024-04-19 09:12

本文主要是介绍踏上R语言之旅:解锁数据世界的神秘密码(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

R语言学习


文章目录

  • R语言学习
  • 数据矩阵与R语言表示
    • 1.创建一个向量(随机变量、一维数组)
    • 2.创建一个矩阵(二维数组)
    • 3.矩阵转置
    • 4.矩阵相加减
    • 5.矩阵相乘
    • 6.矩阵对角元素相关运算
    • 7.矩阵求逆
    • 8.矩阵的特征值与特征向量
    • 9.矩阵的Choleskey分解
    • 10.矩阵奇异值分解
    • 11.矩阵QR分解
    • 12.矩阵kronecker积
    • 13.矩阵的维数
    • 14.矩阵的行和、列和、行平均与列平均
  • 总结


数据矩阵与R语言表示

1.创建一个向量(随机变量、一维数组)

在R中可以用函数c()来创建一个向量,例如

>x1=c(171,175,159,155,152,158,154,164,168,166,159,164)
> x2=c(57,64,41,38,35,44,41,51,57,49,47,46)

这里,x1,x2分别为行向量,也可以认为是1行12列的矩阵。
函数length()可以返回向量的长度,mode()可以返回向量的数据类型,例如:

> length(x1)
[1] 12
> mode(x1)
[1] "numeric"

2.创建一个矩阵(二维数组)

(1)合并命令。可以用rbind()cbind()将两个以上的向量或矩阵合并起来,

rbind()表示按行合并,cbind()则表示按列合并。

> rbind(x1,x2)[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
x1  171  175  159  155  152  158  154  164  168   166   159   164
x2   57   64   41   38   35   44   41   51   57    49    47    46
> cbind(x1,x2)x1 x2[1,] 171 57[2,] 175 64[3,] 159 41[4,] 155 38[5,] 152 35[6,] 158 44[7,] 154 41[8,] 164 51[9,] 168 57
[10,] 166 49
[11,] 159 47
[12,] 164 46

(2)生成矩阵。在R中可以用函数matrix()来创建一个矩阵,引用该函数时需要输入必要的参数值。

> matrix(data=NA,nrow=1,ncol=1,byrow=FALSE,dimnames=NULL)[,1]
[1,]   NA

data项为必要的矩阵元素,nrow为行数,ncol为列数,注意nrow与ncol的乘积应为矩阵元素个数,byrow项控制排列元素时是否按行进行,dimnames给定行和列的名称,例如:

 matrix(x1,nrow=3,ncol=4)[,1] [,2] [,3] [,4]
[1,]  171  155  154  166
[2,]  175  152  164  159
[3,]  159  158  168  164
 matrix(x1,nrow=4,ncol=3)[,1] [,2] [,3]
[1,]  171  152  168
[2,]  175  158  166
[3,]  159  154  159
[4,]  155  164  164
 matrix(x1,nrow=4,ncol=3,byrow=T)[,1] [,2] [,3]
[1,]  171  175  159
[2,]  155  152  158
[3,]  154  164  168
[4,]  166  159  164

3.矩阵转置

A为mxn矩阵,A’为其转置矩阵,求A’在R中可用函数t(),例如:

> A=matrix(1:12,nrow=3,ncol=4)
> A[,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> t(A)[,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12

4.矩阵相加减

在R中对同行同列矩阵相加减,可用符号“+”、“-”,例如:

> A=B=matrix(1:12,nrow=3,ncol=4)
> A+B[,1] [,2] [,3] [,4]
[1,]    2    8   14   20
[2,]    4   10   16   22
[3,]    6   12   18   24
> A-B[,1] [,2] [,3] [,4]
[1,]    0    0    0    0
[2,]    0    0    0    0
[3,]    0    0    0    0

5.矩阵相乘

A为mxn矩阵,B为nxk矩阵,在R中求AB可用符号“%*%",例如:

> A=matrix(1:12,nrow=3,ncol=4)
> B=matrix(1:12,nrow=4,ncol=3)
> A%*%B[,1] [,2] [,3]
[1,]   70  158  246
[2,]   80  184  288
[3,]   90  210  330

6.矩阵对角元素相关运算

若要取一个方阵的对角元素,对一个向量应用diag()函数将产生以这个向量为对角元素的对角矩阵,对一个正整数k应用diag()函数将产生k维单位矩阵,例如:

> A=matrix(1:16,nrow=4,ncol=4)
> diag(A)
[1]  1  6 11 16
> diag(diag(A))[,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    6    0    0
[3,]    0    0   11    0
[4,]    0    0    0   16
> diag(4)[,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1

7.矩阵求逆

矩阵求逆可用solve(),应用solve(A,b)运算结果可解线性方程组Ax=b,若b缺省,则系统默认为单位矩阵,由此可用其进行矩阵求逆,例如:

> A=matrix(rnorm(16),4,4);
> A[,1]       [,2]        [,3]       [,4]
[1,] -0.2930984 -1.7887997 -0.13792868  0.8021037
[2,] -1.3322062  0.3419297  1.18732716 -1.8372907
[3,]  1.0203442 -2.4283146  0.03727872 -2.4674615
[4,] -0.9507527  0.6046697 -0.79238198 -0.1241637
> solve(A)[,1]        [,2]       [,3]        [,4]
[1,] -0.35916036 -0.30123211  0.1268138 -0.38288995
[2,] -0.39760300 -0.02206908 -0.1143649  0.03076075
[3,]  0.08927873  0.35986115 -0.2013035 -0.74780287
[4,]  0.24412384 -0.09740967 -0.2433257 -0.19990320

8.矩阵的特征值与特征向量

矩阵A的谱分解为A=UΛU’,其中Λ是由A的特征值组成的对角矩阵,U的列为A的特征值对应的特征向量,在R中可以用函数eigen()得到U和Λ。

eigen(x,symmetric,only.values=FALSE,EISPACK=FALSE)

其中,x为矩阵,symmetric项指定矩阵x是否为对称矩阵,若不指定,系统将自动检测x是否为对称矩阵,例如:

> A=diag(4)+1;A;[,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2
> A.e=eigen(A,symmetric=T)
> A.e
eigen() decomposition
$values
[1] 5 1 1 1$vectors[,1]       [,2]       [,3]       [,4]
[1,] -0.5  0.8660254  0.0000000  0.0000000
[2,] -0.5 -0.2886751 -0.5773503 -0.5773503
[3,] -0.5 -0.2886751 -0.2113249  0.7886751
[4,] -0.5 -0.2886751  0.7886751 -0.2113249> A.e$vector%*%diag(A.e$values)%*%t(A.e$vectors)[,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2

上面最后的语句作用是重构原始矩阵,其中 A.e$vector 是原始矩阵的特征向量,diag(A.e$values) 是一个以特征值为对角线元素的对角矩阵,t(A.e$vectors) 是特征向量的转置矩阵。

9.矩阵的Choleskey分解

对于正定矩阵A,可对其进行Choleskey分解,即A=P’P,其中,P为上三角矩阵,在R中可以用函数chol()进行Choleskey分解,例如:

> A.c=chol(A)
> A.c[,1]      [,2]      [,3]      [,4]
[1,] 1.414214 0.7071068 0.7071068 0.7071068
[2,] 0.000000 1.2247449 0.4082483 0.4082483
[3,] 0.000000 0.0000000 1.1547005 0.2886751
[4,] 0.000000 0.0000000 0.0000000 1.1180340
> t(A.c)%*%A.c[,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2

10.矩阵奇异值分解

A为mxn矩阵,rank(A)=r,可以分解为A=UDV’,其中,U’U=V’V=I。在R中可以用函数svd()进行奇异值分解,例如:

> A=matrix(1:18,3,6);A;[,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    4    7   10   13   16
[2,]    2    5    8   11   14   17
[3,]    3    6    9   12   15   18
> A.s=svd(A)
> A.s
$d
[1] 4.589453e+01 1.640705e+00 1.366522e-15$u[,1]        [,2]       [,3]
[1,] -0.5290354  0.74394551  0.4082483
[2,] -0.5760715  0.03840487 -0.8164966
[3,] -0.6231077 -0.66713577  0.4082483$v[,1]        [,2]       [,3]
[1,] -0.07736219 -0.71960032 -0.4076688
[2,] -0.19033085 -0.50893247  0.5745647
[3,] -0.30329950 -0.29826463 -0.0280114
[4,] -0.41626816 -0.08759679  0.2226621
[5,] -0.52923682  0.12307105 -0.6212052
[6,] -0.64220548  0.33373889  0.2596585> A.s$u%*%diag(A.s$d)%*%t(A.s$v)[,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    4    7   10   13   16
[2,]    2    5    8   11   14   17
[3,]    3    6    9   12   15   18

11.矩阵QR分解

A为mxn矩阵时可以进行QR分解,A=QR,其中,Q’Q=I,在R中可以用函数qr()进行QR分解,例如:

> A=matrix(1:16,4,4)
> qr(A)
$qr[,1]        [,2]          [,3]          [,4]
[1,] -5.4772256 -12.7801930 -2.008316e+01 -2.738613e+01
[2,]  0.3651484  -3.2659863 -6.531973e+00 -9.797959e+00
[3,]  0.5477226  -0.3781696  1.601186e-15  2.217027e-15
[4,]  0.7302967  -0.9124744 -5.547002e-01 -1.478018e-15$rank
[1] 2$qraux
[1] 1.182574e+00 1.156135e+00 1.832050e+00 1.478018e-15$pivot
[1] 1 2 3 4attr(,"class")
[1] "qr"

12.矩阵kronecker积

nxm矩阵A与hxk矩阵B的kronecker积为一个nhxmk维矩阵,在R中,kronecker积可以用函数kronecker()来计算,例如:

> A=matrix(1:4,2,2)
> A[,1] [,2]
[1,]    1    3
[2,]    2    4
> B=matrix(rep(1,4),2,2);B;[,1] [,2]
[1,]    1    1
[2,]    1    1
> kronecker(A,B)[,1] [,2] [,3] [,4]
[1,]    1    1    3    3
[2,]    1    1    3    3
[3,]    2    2    4    4
[4,]    2    2    4    4

13.矩阵的维数

在R中很容易得到一个矩阵的维数,函数dim()将返回一个矩阵的维数,nrow()返回行数,ncol()返回列数,例如:

> A=matrix(1:12,3,4)
> dim(A)
[1] 3 4
> nrow(A)
[1] 3
> ncol(A)
[1] 4

14.矩阵的行和、列和、行平均与列平均

一个矩阵的和、平均数以及列的和、平均数,例如:
rowSums() rowMeans() colSums() colMeans()

> rowSums(A)
[1] 22 26 30
> rowMeans(A)
[1] 5.5 6.5 7.5
> colSums(A)
[1]  6 15 24 33
> colMeans(A)
[1]  2  5  8 11
> A[,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

上述关于矩阵行和列的操作,还可以使用apply()函数实现:

apply(X,MARGIN,FUN,…)
其中,X为矩阵,MARGIN用来指定是对行运算还是对列运算,MARGIN=1表示对行运算,MARGIN=2表示对列运算,FUN用来指定运算函数,”…"用来给定FUN中需要的其他参数,例如:

> apply(A,1,sum)
[1] 22 26 30
> apply(A,1,mean)
[1] 5.5 6.5 7.5
> apply(A,2,sum)
[1]  6 15 24 33
> apply(A,2,mean)
[1]  2  5  8 11

apply()函数还可以对矩阵的行或列进行其他运算,例如计算每一列的方差:

> A=matrix(rnorm(10),2,5)
> apply(A,2,var)
[1] 0.06233338 1.72555863 0.45365134 0.83043694 0.37709323
> apply(A,2,function(x,a)x*a,a=2)[,1]      [,2]       [,3]       [,4]       [,5]
[1,] -2.437330 -1.090969 -1.5564223  1.9951652  0.3086047
[2,] -1.731167  2.624468  0.3486265 -0.5823327 -1.4282735

注:最后一式与A*2效果一致,旨在说明如何应用apply函数

总结

主要运用的是线性代数里面所涉及到的知识,不得不说,R语言所包含的函数着实比较丰富,所学知识取自王斌会老师的《多元统计分析及R语言建模》,上述内容均本人手敲,创作不易,收获不浅,继续加油!

这篇关于踏上R语言之旅:解锁数据世界的神秘密码(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917128

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

揭秘世界上那些同时横跨两大洲的国家

我们在《世界人口过亿的一级行政区分布》盘点全球是那些人口过亿的一级行政区。 现在我们介绍五个横跨两州的国家,并整理七大洲和这些国家的KML矢量数据分析分享给大家,如果你需要这些数据,请在文末查看领取方式。 世界上横跨两大洲的国家 地球被分为七个大洲分别是亚洲、欧洲、北美洲、南美洲、非洲、大洋洲和南极洲。 七大洲示意图 其中,南极洲是无人居住的大陆,而其他六个大洲则孕育了众多国家和

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl