政安晨:【Keras机器学习示例演绎】(一)—— 利用类 U-Net 架构进行图像分割

本文主要是介绍政安晨:【Keras机器学习示例演绎】(一)—— 利用类 U-Net 架构进行图像分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

下载数据

准备输入图像的路径和目标分割掩码

一幅输入图像和相应的分割掩码是什么样子的?

准备数据集,以加载和矢量化成批数据

准备 U-Net Xception 风格模型

预留验证分割

训练模型

可视化预测


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:在宠物数据集上从头开始训练的图像分割模型。

下载数据

!!wget https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
!!wget https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
!
!curl -O https://thor.robots.ox.ac.uk/datasets/pets/images.tar.gz
!curl -O https://thor.robots.ox.ac.uk/datasets/pets/annotations.tar.gz
!
!tar -xf images.tar.gz
!tar -xf annotations.tar.gz

演绎展示:

  % Total    % Received % Xferd  Average Speed   Time    Time     Time  CurrentDload  Upload   Total   Spent    Left  Speed
100  755M  100  755M    0     0  21.3M      0  0:00:35  0:00:35 --:--:-- 22.2M% Total    % Received % Xferd  Average Speed   Time    Time     Time  CurrentDload  Upload   Total   Spent    Left  Speed
100 18.2M  100 18.2M    0     0  7977k      0  0:00:02  0:00:02 --:--:-- 7974k

准备输入图像的路径和目标分割掩码

import osinput_dir = "images/"
target_dir = "annotations/trimaps/"
img_size = (160, 160)
num_classes = 3
batch_size = 32input_img_paths = sorted([os.path.join(input_dir, fname)for fname in os.listdir(input_dir)if fname.endswith(".jpg")]
)
target_img_paths = sorted([os.path.join(target_dir, fname)for fname in os.listdir(target_dir)if fname.endswith(".png") and not fname.startswith(".")]
)print("Number of samples:", len(input_img_paths))for input_path, target_path in zip(input_img_paths[:10], target_img_paths[:10]):print(input_path, "|", target_path)

演绎展示:

Number of samples: 7390
images/Abyssinian_1.jpg | annotations/trimaps/Abyssinian_1.png
images/Abyssinian_10.jpg | annotations/trimaps/Abyssinian_10.png
images/Abyssinian_100.jpg | annotations/trimaps/Abyssinian_100.png
images/Abyssinian_101.jpg | annotations/trimaps/Abyssinian_101.png
images/Abyssinian_102.jpg | annotations/trimaps/Abyssinian_102.png
images/Abyssinian_103.jpg | annotations/trimaps/Abyssinian_103.png
images/Abyssinian_104.jpg | annotations/trimaps/Abyssinian_104.png
images/Abyssinian_105.jpg | annotations/trimaps/Abyssinian_105.png
images/Abyssinian_106.jpg | annotations/trimaps/Abyssinian_106.png
images/Abyssinian_107.jpg | annotations/trimaps/Abyssinian_107.png

一幅输入图像和相应的分割掩码是什么样子的?

from IPython.display import Image, display
from keras.utils import load_img
from PIL import ImageOps# Display input image #7
display(Image(filename=input_img_paths[9]))# Display auto-contrast version of corresponding target (per-pixel categories)
img = ImageOps.autocontrast(load_img(target_img_paths[9]))
display(img)

准备数据集,以加载和矢量化成批数据

import keras
import numpy as np
from tensorflow import data as tf_data
from tensorflow import image as tf_image
from tensorflow import io as tf_iodef get_dataset(batch_size,img_size,input_img_paths,target_img_paths,max_dataset_len=None,
):"""Returns a TF Dataset."""def load_img_masks(input_img_path, target_img_path):input_img = tf_io.read_file(input_img_path)input_img = tf_io.decode_png(input_img, channels=3)input_img = tf_image.resize(input_img, img_size)input_img = tf_image.convert_image_dtype(input_img, "float32")target_img = tf_io.read_file(target_img_path)target_img = tf_io.decode_png(target_img, channels=1)target_img = tf_image.resize(target_img, img_size, method="nearest")target_img = tf_image.convert_image_dtype(target_img, "uint8")# Ground truth labels are 1, 2, 3. Subtract one to make them 0, 1, 2:target_img -= 1return input_img, target_img# For faster debugging, limit the size of dataif max_dataset_len:input_img_paths = input_img_paths[:max_dataset_len]target_img_paths = target_img_paths[:max_dataset_len]dataset = tf_data.Dataset.from_tensor_slices((input_img_paths, target_img_paths))dataset = dataset.map(load_img_masks, num_parallel_calls=tf_data.AUTOTUNE)return dataset.batch(batch_size)

准备 U-Net Xception 风格模型

from keras import layersdef get_model(img_size, num_classes):inputs = keras.Input(shape=img_size + (3,))### [First half of the network: downsampling inputs] #### Entry blockx = layers.Conv2D(32, 3, strides=2, padding="same")(inputs)x = layers.BatchNormalization()(x)x = layers.Activation("relu")(x)previous_block_activation = x  # Set aside residual# Blocks 1, 2, 3 are identical apart from the feature depth.for filters in [64, 128, 256]:x = layers.Activation("relu")(x)x = layers.SeparableConv2D(filters, 3, padding="same")(x)x = layers.BatchNormalization()(x)x = layers.Activation("relu")(x)x = layers.SeparableConv2D(filters, 3, padding="same")(x)x = layers.BatchNormalization()(x)x = layers.MaxPooling2D(3, strides=2, padding="same")(x)# Project residualresidual = layers.Conv2D(filters, 1, strides=2, padding="same")(previous_block_activation)x = layers.add([x, residual])  # Add back residualprevious_block_activation = x  # Set aside next residual### [Second half of the network: upsampling inputs] ###for filters in [256, 128, 64, 32]:x = layers.Activation("relu")(x)x = layers.Conv2DTranspose(filters, 3, padding="same")(x)x = layers.BatchNormalization()(x)x = layers.Activation("relu")(x)x = layers.Conv2DTranspose(filters, 3, padding="same")(x)x = layers.BatchNormalization()(x)x = layers.UpSampling2D(2)(x)# Project residualresidual = layers.UpSampling2D(2)(previous_block_activation)residual = layers.Conv2D(filters, 1, padding="same")(residual)x = layers.add([x, residual])  # Add back residualprevious_block_activation = x  # Set aside next residual# Add a per-pixel classification layeroutputs = layers.Conv2D(num_classes, 3, activation="softmax", padding="same")(x)# Define the modelmodel = keras.Model(inputs, outputs)return model# Build model
model = get_model(img_size, num_classes)
model.summary()

演绎展示:

Model: "functional_1"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓
┃ Layer (type)        ┃ Output Shape      ┃ Param # ┃ Connected to         ┃
┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩
│ input_layer         │ (None, 160, 160,  │       0 │ -                    │
│ (InputLayer)        │ 3)                │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d (Conv2D)     │ (None, 80, 80,    │     896 │ input_layer[0][0]    │
│                     │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalization │ (None, 80, 80,    │     128 │ conv2d[0][0]         │
│ (BatchNormalizatio… │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation          │ (None, 80, 80,    │       0 │ batch_normalization… │
│ (Activation)        │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_1        │ (None, 80, 80,    │       0 │ activation[0][0]     │
│ (Activation)        │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d    │ (None, 80, 80,    │   2,400 │ activation_1[0][0]   │
│ (SeparableConv2D)   │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 80, 80,    │     256 │ separable_conv2d[0]… │
│ (BatchNormalizatio… │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_2        │ (None, 80, 80,    │       0 │ batch_normalization… │
│ (Activation)        │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d_1  │ (None, 80, 80,    │   4,736 │ activation_2[0][0]   │
│ (SeparableConv2D)   │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 80, 80,    │     256 │ separable_conv2d_1[… │
│ (BatchNormalizatio… │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ max_pooling2d       │ (None, 40, 40,    │       0 │ batch_normalization… │
│ (MaxPooling2D)      │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_1 (Conv2D)   │ (None, 40, 40,    │   2,112 │ activation[0][0]     │
│                     │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add (Add)           │ (None, 40, 40,    │       0 │ max_pooling2d[0][0], │
│                     │ 64)               │         │ conv2d_1[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_3        │ (None, 40, 40,    │       0 │ add[0][0]            │
│ (Activation)        │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d_2  │ (None, 40, 40,    │   8,896 │ activation_3[0][0]   │
│ (SeparableConv2D)   │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 40, 40,    │     512 │ separable_conv2d_2[… │
│ (BatchNormalizatio… │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_4        │ (None, 40, 40,    │       0 │ batch_normalization… │
│ (Activation)        │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d_3  │ (None, 40, 40,    │  17,664 │ activation_4[0][0]   │
│ (SeparableConv2D)   │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 40, 40,    │     512 │ separable_conv2d_3[… │
│ (BatchNormalizatio… │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ max_pooling2d_1     │ (None, 20, 20,    │       0 │ batch_normalization… │
│ (MaxPooling2D)      │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_2 (Conv2D)   │ (None, 20, 20,    │   8,320 │ add[0][0]            │
│                     │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_1 (Add)         │ (None, 20, 20,    │       0 │ max_pooling2d_1[0][… │
│                     │ 128)              │         │ conv2d_2[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_5        │ (None, 20, 20,    │       0 │ add_1[0][0]          │
│ (Activation)        │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d_4  │ (None, 20, 20,    │  34,176 │ activation_5[0][0]   │
│ (SeparableConv2D)   │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 20, 20,    │   1,024 │ separable_conv2d_4[… │
│ (BatchNormalizatio… │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_6        │ (None, 20, 20,    │       0 │ batch_normalization… │
│ (Activation)        │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d_5  │ (None, 20, 20,    │  68,096 │ activation_6[0][0]   │
│ (SeparableConv2D)   │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 20, 20,    │   1,024 │ separable_conv2d_5[… │
│ (BatchNormalizatio… │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ max_pooling2d_2     │ (None, 10, 10,    │       0 │ batch_normalization… │
│ (MaxPooling2D)      │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_3 (Conv2D)   │ (None, 10, 10,    │  33,024 │ add_1[0][0]          │
│                     │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_2 (Add)         │ (None, 10, 10,    │       0 │ max_pooling2d_2[0][… │
│                     │ 256)              │         │ conv2d_3[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_7        │ (None, 10, 10,    │       0 │ add_2[0][0]          │
│ (Activation)        │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose    │ (None, 10, 10,    │ 590,080 │ activation_7[0][0]   │
│ (Conv2DTranspose)   │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 10, 10,    │   1,024 │ conv2d_transpose[0]… │
│ (BatchNormalizatio… │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_8        │ (None, 10, 10,    │       0 │ batch_normalization… │
│ (Activation)        │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_1  │ (None, 10, 10,    │ 590,080 │ activation_8[0][0]   │
│ (Conv2DTranspose)   │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 10, 10,    │   1,024 │ conv2d_transpose_1[… │
│ (BatchNormalizatio… │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_1     │ (None, 20, 20,    │       0 │ add_2[0][0]          │
│ (UpSampling2D)      │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d       │ (None, 20, 20,    │       0 │ batch_normalization… │
│ (UpSampling2D)      │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_4 (Conv2D)   │ (None, 20, 20,    │  65,792 │ up_sampling2d_1[0][… │
│                     │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_3 (Add)         │ (None, 20, 20,    │       0 │ up_sampling2d[0][0], │
│                     │ 256)              │         │ conv2d_4[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_9        │ (None, 20, 20,    │       0 │ add_3[0][0]          │
│ (Activation)        │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_2  │ (None, 20, 20,    │ 295,040 │ activation_9[0][0]   │
│ (Conv2DTranspose)   │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 20, 20,    │     512 │ conv2d_transpose_2[… │
│ (BatchNormalizatio… │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_10       │ (None, 20, 20,    │       0 │ batch_normalization… │
│ (Activation)        │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_3  │ (None, 20, 20,    │ 147,584 │ activation_10[0][0]  │
│ (Conv2DTranspose)   │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 20, 20,    │     512 │ conv2d_transpose_3[… │
│ (BatchNormalizatio… │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_3     │ (None, 40, 40,    │       0 │ add_3[0][0]          │
│ (UpSampling2D)      │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_2     │ (None, 40, 40,    │       0 │ batch_normalization… │
│ (UpSampling2D)      │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_5 (Conv2D)   │ (None, 40, 40,    │  32,896 │ up_sampling2d_3[0][… │
│                     │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_4 (Add)         │ (None, 40, 40,    │       0 │ up_sampling2d_2[0][… │
│                     │ 128)              │         │ conv2d_5[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_11       │ (None, 40, 40,    │       0 │ add_4[0][0]          │
│ (Activation)        │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_4  │ (None, 40, 40,    │  73,792 │ activation_11[0][0]  │
│ (Conv2DTranspose)   │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 40, 40,    │     256 │ conv2d_transpose_4[… │
│ (BatchNormalizatio… │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_12       │ (None, 40, 40,    │       0 │ batch_normalization… │
│ (Activation)        │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_5  │ (None, 40, 40,    │  36,928 │ activation_12[0][0]  │
│ (Conv2DTranspose)   │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 40, 40,    │     256 │ conv2d_transpose_5[… │
│ (BatchNormalizatio… │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_5     │ (None, 80, 80,    │       0 │ add_4[0][0]          │
│ (UpSampling2D)      │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_4     │ (None, 80, 80,    │       0 │ batch_normalization… │
│ (UpSampling2D)      │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_6 (Conv2D)   │ (None, 80, 80,    │   8,256 │ up_sampling2d_5[0][… │
│                     │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_5 (Add)         │ (None, 80, 80,    │       0 │ up_sampling2d_4[0][… │
│                     │ 64)               │         │ conv2d_6[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_13       │ (None, 80, 80,    │       0 │ add_5[0][0]          │
│ (Activation)        │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_6  │ (None, 80, 80,    │  18,464 │ activation_13[0][0]  │
│ (Conv2DTranspose)   │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 80, 80,    │     128 │ conv2d_transpose_6[… │
│ (BatchNormalizatio… │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_14       │ (None, 80, 80,    │       0 │ batch_normalization… │
│ (Activation)        │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_7  │ (None, 80, 80,    │   9,248 │ activation_14[0][0]  │
│ (Conv2DTranspose)   │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 80, 80,    │     128 │ conv2d_transpose_7[… │
│ (BatchNormalizatio… │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_7     │ (None, 160, 160,  │       0 │ add_5[0][0]          │
│ (UpSampling2D)      │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_6     │ (None, 160, 160,  │       0 │ batch_normalization… │
│ (UpSampling2D)      │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_7 (Conv2D)   │ (None, 160, 160,  │   2,080 │ up_sampling2d_7[0][… │
│                     │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_6 (Add)         │ (None, 160, 160,  │       0 │ up_sampling2d_6[0][… │
│                     │ 32)               │         │ conv2d_7[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_8 (Conv2D)   │ (None, 160, 160,  │     867 │ add_6[0][0]          │
│                     │ 3)                │         │                      │
└─────────────────────┴───────────────────┴─────────┴──────────────────────┘
 Total params: 2,058,979 (7.85 MB)
 Trainable params: 2,055,203 (7.84 MB)
 Non-trainable params: 3,776 (14.75 KB)

预留验证分割

import random# Split our img paths into a training and a validation set
val_samples = 1000
random.Random(1337).shuffle(input_img_paths)
random.Random(1337).shuffle(target_img_paths)
train_input_img_paths = input_img_paths[:-val_samples]
train_target_img_paths = target_img_paths[:-val_samples]
val_input_img_paths = input_img_paths[-val_samples:]
val_target_img_paths = target_img_paths[-val_samples:]# Instantiate dataset for each split
# Limit input files in `max_dataset_len` for faster epoch training time.
# Remove the `max_dataset_len` arg when running with full dataset.
train_dataset = get_dataset(batch_size,img_size,train_input_img_paths,train_target_img_paths,max_dataset_len=1000,
)
valid_dataset = get_dataset(batch_size, img_size, val_input_img_paths, val_target_img_paths
)

训练模型

# Configure the model for training.
# We use the "sparse" version of categorical_crossentropy
# because our target data is integers.
model.compile(optimizer=keras.optimizers.Adam(1e-4), loss="sparse_categorical_crossentropy"
)callbacks = [keras.callbacks.ModelCheckpoint("oxford_segmentation.keras", save_best_only=True)
]# Train the model, doing validation at the end of each epoch.
epochs = 50
model.fit(train_dataset,epochs=epochs,validation_data=valid_dataset,callbacks=callbacks,verbose=2,
)

演绎展示:
 

Epoch 1/50WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1700414690.172044 2226172 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.
Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 62s - 2s/step - loss: 1.6363 - val_loss: 2.2226
Epoch 2/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 94ms/step - loss: 0.9223 - val_loss: 1.8273
Epoch 3/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 82ms/step - loss: 0.7894 - val_loss: 2.0044
Epoch 4/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 83ms/step - loss: 0.7174 - val_loss: 2.3480
Epoch 5/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 82ms/step - loss: 0.6695 - val_loss: 2.7528
Epoch 6/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 83ms/step - loss: 0.6325 - val_loss: 3.1453
Epoch 7/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 84ms/step - loss: 0.6012 - val_loss: 3.5611
Epoch 8/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 87ms/step - loss: 0.5730 - val_loss: 4.0003
Epoch 9/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 85ms/step - loss: 0.5466 - val_loss: 4.4798
Epoch 10/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 86ms/step - loss: 0.5210 - val_loss: 5.0245
Epoch 11/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 87ms/step - loss: 0.4958 - val_loss: 5.5950
Epoch 12/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 87ms/step - loss: 0.4706 - val_loss: 6.1534
Epoch 13/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 85ms/step - loss: 0.4453 - val_loss: 6.6107
Epoch 14/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 83ms/step - loss: 0.4202 - val_loss: 6.8010
Epoch 15/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 84ms/step - loss: 0.3956 - val_loss: 6.6751
Epoch 16/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 83ms/step - loss: 0.3721 - val_loss: 6.0800
Epoch 17/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 84ms/step - loss: 0.3506 - val_loss: 5.1820
Epoch 18/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 82ms/step - loss: 0.3329 - val_loss: 4.0350
Epoch 19/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 4s - 114ms/step - loss: 0.3216 - val_loss: 3.0513
Epoch 20/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 94ms/step - loss: 0.3595 - val_loss: 2.2567
Epoch 21/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 100ms/step - loss: 0.4417 - val_loss: 1.5873
Epoch 22/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 101ms/step - loss: 0.3531 - val_loss: 1.5798
Epoch 23/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 96ms/step - loss: 0.3353 - val_loss: 1.5525
Epoch 24/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 95ms/step - loss: 0.3392 - val_loss: 1.4625
Epoch 25/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 95ms/step - loss: 0.3596 - val_loss: 0.8867
Epoch 26/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 94ms/step - loss: 0.3528 - val_loss: 0.8021
Epoch 27/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 92ms/step - loss: 0.3237 - val_loss: 0.7986
Epoch 28/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 89ms/step - loss: 0.3198 - val_loss: 0.8533
Epoch 29/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 84ms/step - loss: 0.3272 - val_loss: 1.0588
Epoch 30/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 88ms/step - loss: 0.3164 - val_loss: 1.1889
Epoch 31/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 85ms/step - loss: 0.2987 - val_loss: 0.9518
Epoch 32/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 87ms/step - loss: 0.2749 - val_loss: 0.9011
Epoch 33/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 84ms/step - loss: 0.2595 - val_loss: 0.8872
Epoch 34/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 87ms/step - loss: 0.2552 - val_loss: 1.0221
Epoch 35/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 82ms/step - loss: 0.2628 - val_loss: 1.1553
Epoch 36/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 85ms/step - loss: 0.2788 - val_loss: 2.1549
Epoch 37/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 94ms/step - loss: 0.2870 - val_loss: 1.6282
Epoch 38/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 89ms/step - loss: 0.2702 - val_loss: 1.3201
Epoch 39/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 91ms/step - loss: 0.2569 - val_loss: 1.2364
Epoch 40/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 106ms/step - loss: 0.2523 - val_loss: 1.3673
Epoch 41/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 86ms/step - loss: 0.2570 - val_loss: 1.3999
Epoch 42/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 87ms/step - loss: 0.2680 - val_loss: 0.9976
Epoch 43/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 83ms/step - loss: 0.2558 - val_loss: 1.0209
Epoch 44/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 85ms/step - loss: 0.2403 - val_loss: 1.3271
Epoch 45/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 83ms/step - loss: 0.2414 - val_loss: 1.1993
Epoch 46/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 84ms/step - loss: 0.2516 - val_loss: 1.0532
Epoch 47/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 83ms/step - loss: 0.2695 - val_loss: 1.1183
Epoch 48/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 87ms/step - loss: 0.2555 - val_loss: 1.0432
Epoch 49/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 82ms/step - loss: 0.2290 - val_loss: 0.9444
Epoch 50/50Corrupt JPEG data: 240 extraneous bytes before marker 0xd932/32 - 3s - 83ms/step - loss: 0.1994 - val_loss: 1.2182<keras.src.callbacks.history.History at 0x7fe01842dab0>

可视化预测

# Generate predictions for all images in the validation setval_dataset = get_dataset(batch_size, img_size, val_input_img_paths, val_target_img_paths
)
val_preds = model.predict(val_dataset)def display_mask(i):"""Quick utility to display a model's prediction."""mask = np.argmax(val_preds[i], axis=-1)mask = np.expand_dims(mask, axis=-1)img = ImageOps.autocontrast(keras.utils.array_to_img(mask))display(img)# Display results for validation image #10
i = 10# Display input image
display(Image(filename=val_input_img_paths[i]))# Display ground-truth target mask
img = ImageOps.autocontrast(load_img(val_target_img_paths[i]))
display(img)# Display mask predicted by our model
display_mask(i)  # Note that the model only sees inputs at 150x150.

演绎展示:
 

 32/32 ━━━━━━━━━━━━━━━━━━━━ 5s 100ms/step


这篇关于政安晨:【Keras机器学习示例演绎】(一)—— 利用类 U-Net 架构进行图像分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917021

相关文章

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的