(八)Pandas窗口数据与数据读写 学习简要笔记 #Python #CDA学习打卡

2024-04-19 06:36

本文主要是介绍(八)Pandas窗口数据与数据读写 学习简要笔记 #Python #CDA学习打卡,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 窗口数据(Window Functions)

Pandas提供了窗口函数(Window Functions)用于在数据上执行滑动窗口操作,可以对数据进行滚动计算、滑动统计等操作。需要注意的是,在使用窗口函数时,需要根据实际需求选择合适的窗口大小和窗口函数,并确保数据的顺序和窗口大小的一致性。本文主要介绍滚动计算函数,以下是一些常用操作和示例代码。

1)滚动计算函数简介

滚动计算(Rolling Calculation)是一种数据处理技术,它在时间序列数据或数据框中执行基于移动窗口的计算。为了提升数据的准确性,将某个点的取值扩大到包含这个点的一段区间,用区间来进行判断,这个区间就是窗口。移动窗口就是窗口向一端滑行,默认是从右往左,每次滑行并不是区间整块的滑行,而是一个单位一个单位的滑行。

滚动统计函数rolling()又叫移动窗口函数,此函数可以应用于一系列数据,指定参数window=n,并在其上调用适合的统计函数。在Pandas中,要使用rolling方法,首先需要创建一个rolling对象。rolling对象可以应用于数据框的列,它表示一个窗口,用于滚动计算。

rolling_obj = df['column_name'].rolling(window=window_size)

其中:

  • df['column_name'] 是数据框列的选择,表示我们要在哪个列上执行滚动计算。
  • window_size 是窗口的大小,用于定义滚动窗口的大小。

滑动统计函数表达方式为:

rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None)

其中参数包括:

  • window:可选参数,表示时间窗的大小,注意有两种形式(int或offset)。如果使用int,则数值表示计算统计量的观测值的数量即向前几个数据,如果是offset类型,表示时间窗的大小。
  • min_periods:每个窗口最少包含的观测值数量,小于这个值的窗口结果为NaN,用于处理边界效应。值可以是int,默认None,offset情况下,默认为1。
  • center:把窗口的标签设置为居中。布尔型,默认False,居右
  • win_type:窗口的类型,如矩形窗口或指数加权窗口。截取窗的各种函数,字符串类型,默认为None.
  • on:可选参数,对于dataframe而言,指定要计算滚动窗口的列,值为列名。
  • axis:int、字符串,默认为0,即对列进行计算
  • closed:定义区间的开闭,支持int类型的window。对于offset类型默认是左开右闭,默认为right,可以根据情况指定为left、both等。

2)滚动计算函数常用方法

滚动计算函数常用方法包括:

  • rolling_count():计算各个窗口中非NA观测值的数量
  • rolling_sum():计算各个移动窗口中的元素之和(按列计算)
  • rolling_mean():计算各个移动窗口中元素的均值
  • rolling_median():计算各个移动窗口中元素的中位数
  • rolling_var():计算各个移动窗口中元素的方差
  • rolling_std():计算各个移动窗口中元素的标准差
  • rolling_min():计算各个移动窗口中元素的最小值
  • rolling_max():计算各个移动窗口中元素的最大值
  • rolling_corr():计算各个移动窗口中元素的相关系数
  • rolling_corr_pairwise():计算各个移动窗口中配对数据的相关系数
  • rolling_cov():计算各个移动窗口中元素的的协方差
  • rolling_quantile():计算各个移动窗口中元素的分位数
  • rolling_skew():计算样本值的偏度(三阶矩)
  • rolling_kurt():计算样本值的峰度(四阶矩)

下面只详细介绍六个方法:

(a)移动平均值(Moving Average)

window=3表示窗口大小为3,即计算每3个数据的平均值。

(b)滚动求和(Rolling Sum)

window=5表示窗口大小为5,即计算每5个数据的和。

(c)滚动最大值(Rolling Maximum)

window=7表示窗口大小为7,即计算每7个数据的最大值。

(d)滚动最小值(Rolling Minimum)

window=7表示窗口大小为7,即计算每7个数据的最小值。

(e)滚动标准差(Rolling Standard Deviation)

window=5表示窗口大小为5,即计算每5个数据的标准差。

(f)自定义窗口函数:rolling().apply()方法

custom_function是自定义的窗口函数,data是窗口中的数据,result是窗口函数的计算结果。

二. 数据读写

Pandas提供了多种读取数据的方法,包括读取CSV、Ecel、SQL数据库等。

1)CSV

(a)写出csv文件

(b)读入刚写出的文件

2)EXCEL

(a)写出excel文件

(b)读取excel文件

3)HDF

(a)写出hdf文件

(b)读入刚刚写出的文件

4)SQL

(a)写出到mysql里

(b)读入刚列写出的文件

这篇关于(八)Pandas窗口数据与数据读写 学习简要笔记 #Python #CDA学习打卡的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916819

相关文章

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

通过Python脚本批量复制并规范命名视频文件

《通过Python脚本批量复制并规范命名视频文件》本文介绍了如何通过Python脚本批量复制并规范命名视频文件,实现自动补齐数字编号、保留原始文件、智能识别有效文件等功能,听过代码示例介绍的非常详细,... 目录一、问题场景:杂乱的视频文件名二、完整解决方案三、关键技术解析1. 智能路径处理2. 精准文件名

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常