单链表的基本操作实现:初始化、尾插法、头插法、输出单链表、求表长、按序号查找、按值查找、插入结点、删除结点。

本文主要是介绍单链表的基本操作实现:初始化、尾插法、头插法、输出单链表、求表长、按序号查找、按值查找、插入结点、删除结点。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.参考学习博文(写的相当好的文章):

http://t.csdnimg.cn/AipNl

2.关于我的总结:

定义单链表:

typedef struct LNode
{Elemtype data;struct LNode* next;
}LNode;

data用来存放元素值,next用来指向后继结点,

typedef是自定义结构体,单链表的结点类型为LNode

typedef struct LNode{//单链表的结构定义int data;//定义int类型的数据域struct LNode *next; //定义指针域
}LNode,*linklist;

这个地方会出现两个让人比较迷的东西:结构指针LNode和linklist。本质上而言,这两种类型是等价的。通常用linklist说明指针变量,强调它是某个单链表的头指针变量,定义为linklist L,L表示头指针。LNode用来定义单链表中结点的指针,例如LNode *p,p为结点的指针变量,p也可以定义为头结点。但是在方法的编写时,这两种定义会混合使用,非常容易迷惑我们的思维。我都只使用LNode来定义。

                                                                                                出处:http://t.csdnimg.cn/AipNl

 3.关于我的疑问:

按序号查找元素时,元素的值,用e返回,为什么e要用引用型变量&e

int Getelem_L(LNode* L, int i, int &e)

4.实战代码:

#define _CRT_SECURE_NO_WARNINGS
typedef int Elemtype;
#define ERROR -1
#include<stdio.h>
#include <iostream>
using namespace std;//定义结构体储存俩个元素:data存放元素值,next指向后继节点。
typedef struct LNode
{Elemtype data;struct LNode* next;
}LNode;//初始化单链表
void InitList(LNode* & L)
{L = new LNode;L->next = NULL;
}//建立单链表
//头插法
//void CreateList_H(LNode*& L, int n)
//{
//	LNode* p;
//	for (int i = n; i > 0; --i)
//	{
//		p = new LNode;
//		cin >> p->data;
//		p->next = L->next;
//		L->next = p;
//	}
//}//尾插法
void CreateList_R(LNode*& L, int n)
{LNode* r = L,*p;for (int i = 0; i < n; ++i){p = new LNode;cin >> p->data;p->next = NULL;r->next = p;r = p;}
}//输出单链表
void DispList(LNode* L)
{LNode* p = L->next;printf("打印单链表:\n");while (p != NULL){printf("%d ", p->data);p = p->next;}printf("\n");
}//求单链表的长度
int ListLength_L(LNode* L)
{int  i = 0;LNode* p;p = L->next;while (p) {i++;p = p->next;}return i;
}//按序号查找单链表中的元素(从p=L->next依次扫描,j=1,p每次移动j加1,当j==i时,则找到)
int Getelem_L(LNode* L, int i, int &e)
{LNode *p = L->next;int j = 1;while (p && j < i){p = p->next;++j;}if (!p || j > i)return ERROR;e = p->data;return e;
}//按值查找(从第一个结点依次和e比较,找到返回位置或地址,未找到则返回0或NULL)
int LocateLem_L(LNode* L, int e)
{int i = 1;LNode* p = L->next;while (p && p->data != e){p = p->next;i++;}if (p == NULL)return(0);elsereturn i;
}//单链表的插入操作(在L中第i个元素之前插入e)
void ListInsert_L(LNode*& L, int i, int e)
{LNode* p = L;LNode* s;int j = 0;while (p && j < i - 1)  //查找到第i-1个元素{p = p->next;++j;}s = new LNode;   //创建新结点s,将data域置为es->data = e;s->next = p->next;//将新结点插入结点p之后p->next = s;
}//单链表的删除操作(找到p指向的a(i-1),保存ai,令p->next指向a(i+1),p->next=p->next->next,最后释放结点ai的空间)
void ListDelete_L(LNode*& L, int i, int& e)
{LNode* p = L;LNode* q;          //创建一个新结点q用来临时保存被删除的元素int j = 0;while (p->next && j < i - 1)  //查到第i-1个元素,p指向第i-1个元素{p = p->next;++j;}if (!(p->next) || j > i - 1)  //如果查不到第i-1个元素或者查的元素超过范围,则不进行接下来的操作return;q = p->next;      //q指向第i个元素p->next = q->next;   //p指向第i+1个元素e = q->data;      //e保存结点q的元素delete q;  //释放q的空间printf("删除的元素是:%d", e);
}int main()
{LNode* L;//初始化单链表InitList(L);//尾插法printf("please input five numbers\n");CreateList_R(L, 5);printf("-----------------------------------\n");//输出单链表DispList(L);printf("-----------------------------------\n");//求表长printf("单链表的长度为:%d\n", ListLength_L(L));printf("-----------------------------------\n");//按序号查找单链表中的元素printf("你要查找的元素序列是:");int i,e;cin >> i;printf("\n");printf("要查找的元素是:%d\n",Getelem_L(L, i, e));printf("-----------------------------------\n");//按值查找printf("请输入要查找的值:");cin >> e;printf("\n");printf("该元素的位置是:%d\n", LocateLem_L(L, e));printf("-----------------------------------\n");//插入结点int a=0 , b=0;printf("请输入要插入的位置:");cin >> a;printf("请输入要插入元素的值:");cin >> b;ListInsert_L(L, a, b);printf("\n");DispList(L);//输出单链表printf("-----------------------------------\n");//删除元素printf("请输入要删除的元素位置:\n");int c = 0,d=0;cin >> c;ListDelete_L(L, c,d);printf("\n");DispList(L);//输出单链表printf("-----------------------------------\n");
return 0;
}

5.实战效果演示(已跑代码,准确运行)

这篇关于单链表的基本操作实现:初始化、尾插法、头插法、输出单链表、求表长、按序号查找、按值查找、插入结点、删除结点。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916670

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应