2021年全国大学生电子设计竞赛D题——基于互联网的摄像测量系统(一)

本文主要是介绍2021年全国大学生电子设计竞赛D题——基于互联网的摄像测量系统(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01 D题实现效果演示

视频参考微信原文:2021年全国大学生电子设计竞赛D题——基于互联网的摄像测量系统(一)

02 D题任务要求

(D题原文件参见本文附录)

设计并制作一个图中所示的基于互联网的摄像测量系统。图中边长为1米的正方形区域三个顶点分别为A、B和O。系统有两个独立的摄像节点分别放置在A和B,两个摄像节点拍摄尽量沿AO、BO方向正交,并通过一个百兆/千兆以太网交换机与连接在该交换机的一个终端节点实现网络互联。交换机必须为互联网通用交换机,使用的网口可以任意指定。

在O点上方悬挂一个用柔性透明细线吊起的激光笔,透明细线长度为 l,激光笔常亮向下指示,静止下垂时的指示光点与O点重合。

拉动激光笔偏离静止点的距离小于10cm,松开后激光笔自由摆动。应保证激光笔指示光点的轨迹经O点往复直线运动,轨迹与OA边的夹角为 θ。

利用该系统实现对长度 l 角度 θ 的测量。

基本要求分析

  1. 设计并制作两个独立的摄像节点。每个节点由一个摄像头和相应的电路组成,两个摄像节点均可以拍摄到激光笔的运动视频并显示。

  2. 设计并制作终端节点。在终端显示器上可以分别和同时显示两个摄像节点拍摄的实时视频。在视频中可以识别出激光笔,并在视频中用红色方框实时框住激光笔轮廓。

  3. 测量系统在终端节点设置一键启动。从激光笔摆动开始计时,测量系统通过对激光笔周期摆动视频信号的处理,自动测量长度 l。(50cm ≤ l ≤ 150cm,θ角度自定)  测量完成时,终端声光提示并显示长度 l。要求测量误差绝对值小于 2cm,测量时间小于 30 秒。

题目发挥部分

  1. 一键启动后,测量系统通过两个独立摄像节点的网络协同工作。当 θ = 0° 和 θ = 90° 时,能自动测量长度 l( 50cm ≤ l ≤ 150cm )。要求测量误差绝对值小于 2cm,测量时间小于 30 秒。

  2. 一键启动后,可以测量 θ ( 0° ≤ θ ≤ 90° ) 。要求测量误差绝对值小于 5°,测量时间小于 30 秒。

  3. 其他。

03 硬件方案选择

摄像节点由一个摄像头和相应的电路组成,需要拍摄到激光笔的运动视频并显示。可以使用下面两种方案:

方案一:USB摄像头 + 树莓派

树莓派调用OpenCV库从USB摄像头获取实时图像并显示在HDMI显示器上,然后调用OpenCV库中的图像处理算法识别激光笔,然后在原图像上用红框框住激光笔轮廓,再将激光笔的位置信息和图像通过网络传输到终端节点。

方案二:D8M摄像头 + DE10-Nano开发板

D8M摄像头可通过GPIO接口连接到DE10-Nano开发板上,使用Terasic Camera IP从D8M获取实时视频流数据并显示在HDMI显示器上,再对视频流数据进行处理识别激光笔,然后在原图像上用红框框住激光笔轮廓,再将激光笔的位置信息和图像通过网络传输到终端节点。

方案比较:

方案一采用USB摄像头可以直接使用OpenCV库进行操作,代码简单,但是只能用CPU进行处理,处理效率不够高。

方案二采用GPIO接口的D8M摄像头,直接与DE10-Nano开发板连接,可通过FPGA进行算法加速,CPU只需要读取FPGA端处理好的结果图像再进行简单的计算,可提高处理效率。

综上所述,为了提高处理效率、缩短测量时间,选择方案二作为摄像节点方案。其系统框图如下:

04 检测方案选择

运动目标的检测一般有三种方法:背景差分法、帧间差分法和光流法。

背景差分法

背景差分法是采用图像序列中的当前帧和背景参考模型比较来检测运动物体的一种方法,其性能依赖于所使用的背景建模技术,背景图像的建模和模拟的准确程度,直接影响到检测的效果。

帧间差分法

帧间差分法通过对视频或图像序列中相邻两帧做差分运算来获得运动目标的轮廓,可很好地适用于存在多个运动目标和摄像机移动的情况。

当场景中出现物体运动时,帧与帧之间会出现较为明显的差别,两帧相减,得到两帧图像亮度差的绝对值,判断它是否大于阈值来分析视频或图像序列的运动特性,确定图像序列中有无物体运动。

光流法

光流是关于视域中的物体运动检测中的概念,用来描述相对于观察者的运动所造成的观测目标、表面或边缘的运动。光流法的主要任务就是计算光流场,即在适当的平滑性约束条件下,根据图像序列的时空梯度估算

运动场,通过分析运动场的变化对运动目标和场景进行检测与分割。

方案比较:

背景差分法检测运动目标速度快,检测准确,但对于背景的建模和模拟却比较困难,而要提升准确度就会导致算法的计算量增大,实时性不够好;

帧间差分法对包含运动目标的场景有着比较强的鲁棒性,且运算速度快,实时性好,但该方法一般不能完全检测出运动物体的所有像素点,常常在检测到的运动物体内部出现“空洞”现象,因此仅适用于简单的运动物体检测的情况;

光流法不需要预先知道场景的任何信息,就能够检测到运动对象,可处理背景运动的情况,但噪声、多光源、阴影和遮挡等因素会对光流场分布的计算结果造成严重影响,而且光流法计算复杂,也很难实现实时处理。

综上所述,为了能够实时识别到激光笔,且激光笔内部少量像素点的缺失不会影响检测结果,选择帧间差分法作为运动目标检测算法。

05 长度L的理论计算

单摆的定义

将无重细杆或不可伸长的细柔绳一端悬于重力场内一定点,另一端固定一个重小球,就构成单摆。

小角近似简谐运动(一般认为10°以下可以这样近似),单摆能够往复摆动,在非常小的振幅/角度下,单摆做简谐运动,简谐运动方程式如下所示:

其中,A、 φ 为任意常数,由初值条件给定;而T等于:

其中 l 为无重细杆或细柔绳的长度, g 为当地的重力加速度。

如果已知简谐运动的周期 T,那么就可以计算得到无重细杆或细柔绳的长度 l:

那怎样得到简谐运动的周期T呢?这里采用拟合cos函数。

06 拟合cos函数

获取数据集

采用拟合cos函数的第一步,就是要获取数据集。

以摄像节点A为例进行介绍,这是摄像节点A拍摄到的画面,将左上角作为坐标原点,通过目标检测算法识别激光笔的位置,然后采集在t时刻对应的激光笔轮廓左上角顶点的坐标值x,y以及长和宽,再计算得到中心点的横坐标xt,将中心点的坐标作为激光笔的坐标。

这样就得到了拟合cos函数所需的一组数据,通过测量不同时刻对应的激光笔的位移xt就可以得到一组数据集。

最小二乘法

最小二乘法是解决曲线拟合问题最常用的方法,通过最小化误差的平方和来寻找数据的最佳函数匹配。

余弦曲线表示为:

其中包含4个参数,分别是振幅(A)、周期(T)、初相(φ)和偏距(k)。

设(x, y)是一对观测量,且 x和y满足理论函数:y=f(x, ω),其中ω为待定参数。

为了寻找函数f(x,ω)中参数ω的最优估计值,对于给定m组观测数据(x_i,y_i)(i=1, 2,⋯,m),求解目标函数

L取最小值时对应的参数ω为最优估计值。

07 角度 θ 的理论计算

接下来进行角度θ的理论计算,这是测量系统的俯视图:

图中红色实线CD是激光笔的运动轨迹,其与OA边的夹角为θ,过点C画OA的平行线,过点D画OB的平行线,交于点E,CE的长度为Xb,DE的长度为Xa。这样就可以得到摄像节点A处拍摄到的激光笔运动轨迹的横向分量DE的运动方程式和分量CE的运动方程式为:

又由于每次拉动激光笔后,角度θ是一个固定值,sinθ和cosθ为常量,所以横向分量和竖直分量也都是简谐运动,而DE的长度为Xa,振幅为Xa/2,所以Xa和Xb可以表示为:

我们将这两个式子相比,可以得到tanθ=Xa/Xb,则由反三角函数的正切公式可以计算得到:

08 附录

1. D题源码:socfpga demo: 分享socfpga 相关 demo - Gitee.com

2. Linux image文件:联系微信TerasicNicole

3. D题原始文件

END

这篇关于2021年全国大学生电子设计竞赛D题——基于互联网的摄像测量系统(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/915056

相关文章

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节

CentOS系统使用yum命令报错问题及解决

《CentOS系统使用yum命令报错问题及解决》文章主要讲述了在CentOS系统中使用yum命令时遇到的错误,并提供了个人解决方法,希望对大家有所帮助,并鼓励大家支持脚本之家... 目录Centos系统使用yum命令报错找到文件替换源文件为总结CentOS系统使用yum命令报错http://www.cppc

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、