2021年全国大学生电子设计竞赛D题——基于互联网的摄像测量系统(一)

本文主要是介绍2021年全国大学生电子设计竞赛D题——基于互联网的摄像测量系统(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01 D题实现效果演示

视频参考微信原文:2021年全国大学生电子设计竞赛D题——基于互联网的摄像测量系统(一)

02 D题任务要求

(D题原文件参见本文附录)

设计并制作一个图中所示的基于互联网的摄像测量系统。图中边长为1米的正方形区域三个顶点分别为A、B和O。系统有两个独立的摄像节点分别放置在A和B,两个摄像节点拍摄尽量沿AO、BO方向正交,并通过一个百兆/千兆以太网交换机与连接在该交换机的一个终端节点实现网络互联。交换机必须为互联网通用交换机,使用的网口可以任意指定。

在O点上方悬挂一个用柔性透明细线吊起的激光笔,透明细线长度为 l,激光笔常亮向下指示,静止下垂时的指示光点与O点重合。

拉动激光笔偏离静止点的距离小于10cm,松开后激光笔自由摆动。应保证激光笔指示光点的轨迹经O点往复直线运动,轨迹与OA边的夹角为 θ。

利用该系统实现对长度 l 角度 θ 的测量。

基本要求分析

  1. 设计并制作两个独立的摄像节点。每个节点由一个摄像头和相应的电路组成,两个摄像节点均可以拍摄到激光笔的运动视频并显示。

  2. 设计并制作终端节点。在终端显示器上可以分别和同时显示两个摄像节点拍摄的实时视频。在视频中可以识别出激光笔,并在视频中用红色方框实时框住激光笔轮廓。

  3. 测量系统在终端节点设置一键启动。从激光笔摆动开始计时,测量系统通过对激光笔周期摆动视频信号的处理,自动测量长度 l。(50cm ≤ l ≤ 150cm,θ角度自定)  测量完成时,终端声光提示并显示长度 l。要求测量误差绝对值小于 2cm,测量时间小于 30 秒。

题目发挥部分

  1. 一键启动后,测量系统通过两个独立摄像节点的网络协同工作。当 θ = 0° 和 θ = 90° 时,能自动测量长度 l( 50cm ≤ l ≤ 150cm )。要求测量误差绝对值小于 2cm,测量时间小于 30 秒。

  2. 一键启动后,可以测量 θ ( 0° ≤ θ ≤ 90° ) 。要求测量误差绝对值小于 5°,测量时间小于 30 秒。

  3. 其他。

03 硬件方案选择

摄像节点由一个摄像头和相应的电路组成,需要拍摄到激光笔的运动视频并显示。可以使用下面两种方案:

方案一:USB摄像头 + 树莓派

树莓派调用OpenCV库从USB摄像头获取实时图像并显示在HDMI显示器上,然后调用OpenCV库中的图像处理算法识别激光笔,然后在原图像上用红框框住激光笔轮廓,再将激光笔的位置信息和图像通过网络传输到终端节点。

方案二:D8M摄像头 + DE10-Nano开发板

D8M摄像头可通过GPIO接口连接到DE10-Nano开发板上,使用Terasic Camera IP从D8M获取实时视频流数据并显示在HDMI显示器上,再对视频流数据进行处理识别激光笔,然后在原图像上用红框框住激光笔轮廓,再将激光笔的位置信息和图像通过网络传输到终端节点。

方案比较:

方案一采用USB摄像头可以直接使用OpenCV库进行操作,代码简单,但是只能用CPU进行处理,处理效率不够高。

方案二采用GPIO接口的D8M摄像头,直接与DE10-Nano开发板连接,可通过FPGA进行算法加速,CPU只需要读取FPGA端处理好的结果图像再进行简单的计算,可提高处理效率。

综上所述,为了提高处理效率、缩短测量时间,选择方案二作为摄像节点方案。其系统框图如下:

04 检测方案选择

运动目标的检测一般有三种方法:背景差分法、帧间差分法和光流法。

背景差分法

背景差分法是采用图像序列中的当前帧和背景参考模型比较来检测运动物体的一种方法,其性能依赖于所使用的背景建模技术,背景图像的建模和模拟的准确程度,直接影响到检测的效果。

帧间差分法

帧间差分法通过对视频或图像序列中相邻两帧做差分运算来获得运动目标的轮廓,可很好地适用于存在多个运动目标和摄像机移动的情况。

当场景中出现物体运动时,帧与帧之间会出现较为明显的差别,两帧相减,得到两帧图像亮度差的绝对值,判断它是否大于阈值来分析视频或图像序列的运动特性,确定图像序列中有无物体运动。

光流法

光流是关于视域中的物体运动检测中的概念,用来描述相对于观察者的运动所造成的观测目标、表面或边缘的运动。光流法的主要任务就是计算光流场,即在适当的平滑性约束条件下,根据图像序列的时空梯度估算

运动场,通过分析运动场的变化对运动目标和场景进行检测与分割。

方案比较:

背景差分法检测运动目标速度快,检测准确,但对于背景的建模和模拟却比较困难,而要提升准确度就会导致算法的计算量增大,实时性不够好;

帧间差分法对包含运动目标的场景有着比较强的鲁棒性,且运算速度快,实时性好,但该方法一般不能完全检测出运动物体的所有像素点,常常在检测到的运动物体内部出现“空洞”现象,因此仅适用于简单的运动物体检测的情况;

光流法不需要预先知道场景的任何信息,就能够检测到运动对象,可处理背景运动的情况,但噪声、多光源、阴影和遮挡等因素会对光流场分布的计算结果造成严重影响,而且光流法计算复杂,也很难实现实时处理。

综上所述,为了能够实时识别到激光笔,且激光笔内部少量像素点的缺失不会影响检测结果,选择帧间差分法作为运动目标检测算法。

05 长度L的理论计算

单摆的定义

将无重细杆或不可伸长的细柔绳一端悬于重力场内一定点,另一端固定一个重小球,就构成单摆。

小角近似简谐运动(一般认为10°以下可以这样近似),单摆能够往复摆动,在非常小的振幅/角度下,单摆做简谐运动,简谐运动方程式如下所示:

其中,A、 φ 为任意常数,由初值条件给定;而T等于:

其中 l 为无重细杆或细柔绳的长度, g 为当地的重力加速度。

如果已知简谐运动的周期 T,那么就可以计算得到无重细杆或细柔绳的长度 l:

那怎样得到简谐运动的周期T呢?这里采用拟合cos函数。

06 拟合cos函数

获取数据集

采用拟合cos函数的第一步,就是要获取数据集。

以摄像节点A为例进行介绍,这是摄像节点A拍摄到的画面,将左上角作为坐标原点,通过目标检测算法识别激光笔的位置,然后采集在t时刻对应的激光笔轮廓左上角顶点的坐标值x,y以及长和宽,再计算得到中心点的横坐标xt,将中心点的坐标作为激光笔的坐标。

这样就得到了拟合cos函数所需的一组数据,通过测量不同时刻对应的激光笔的位移xt就可以得到一组数据集。

最小二乘法

最小二乘法是解决曲线拟合问题最常用的方法,通过最小化误差的平方和来寻找数据的最佳函数匹配。

余弦曲线表示为:

其中包含4个参数,分别是振幅(A)、周期(T)、初相(φ)和偏距(k)。

设(x, y)是一对观测量,且 x和y满足理论函数:y=f(x, ω),其中ω为待定参数。

为了寻找函数f(x,ω)中参数ω的最优估计值,对于给定m组观测数据(x_i,y_i)(i=1, 2,⋯,m),求解目标函数

L取最小值时对应的参数ω为最优估计值。

07 角度 θ 的理论计算

接下来进行角度θ的理论计算,这是测量系统的俯视图:

图中红色实线CD是激光笔的运动轨迹,其与OA边的夹角为θ,过点C画OA的平行线,过点D画OB的平行线,交于点E,CE的长度为Xb,DE的长度为Xa。这样就可以得到摄像节点A处拍摄到的激光笔运动轨迹的横向分量DE的运动方程式和分量CE的运动方程式为:

又由于每次拉动激光笔后,角度θ是一个固定值,sinθ和cosθ为常量,所以横向分量和竖直分量也都是简谐运动,而DE的长度为Xa,振幅为Xa/2,所以Xa和Xb可以表示为:

我们将这两个式子相比,可以得到tanθ=Xa/Xb,则由反三角函数的正切公式可以计算得到:

08 附录

1. D题源码:socfpga demo: 分享socfpga 相关 demo - Gitee.com

2. Linux image文件:联系微信TerasicNicole

3. D题原始文件

END

这篇关于2021年全国大学生电子设计竞赛D题——基于互联网的摄像测量系统(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/915056

相关文章

通信系统网络架构_2.广域网网络架构

1.概述          通俗来讲,广域网是将分布于相比局域网络更广区域的计算机设备联接起来的网络。广域网由通信子网于资源子网组成。通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网构建,将分布在不同地区的局域网或计算机系统互连起来,实现资源子网的共享。 2.网络组成          广域网属于多级网络,通常由骨干网、分布网、接入网组成。在网络规模较小时,可仅由骨干网和接入网组成

Linux系统稳定性的奥秘:探究其背后的机制与哲学

在计算机操作系统的世界里,Linux以其卓越的稳定性和可靠性著称,成为服务器、嵌入式系统乃至个人电脑用户的首选。那么,是什么造就了Linux如此之高的稳定性呢?本文将深入解析Linux系统稳定性的几个关键因素,揭示其背后的技术哲学与实践。 1. 开源协作的力量Linux是一个开源项目,意味着任何人都可以查看、修改和贡献其源代码。这种开放性吸引了全球成千上万的开发者参与到内核的维护与优化中,形成了

【科技前沿】电子设计新贵SmartEDA:为何它引领行业风潮?

在当今这个电子科技日新月异的时代,电子设计工具如同设计师的魔法棒,不断推动着产品创新的速度。而近期,一款名为SmartEDA的电子国产设计仿真软件异军突起,成为了行业内的新宠。那么,SmartEDA究竟有何过人之处,为何它能够如此受欢迎呢? 一、智能化设计,提升效率 SmartEDA的核心优势,能够完成电路设计的优化、仿真和验证等复杂过程。这不仅大大减少了设计师的工作量,还提高了设计的准确

PS系统教程25

介绍软件 BR(bridge) PS 配套软件,方便素材整理、管理素材 作用:起到桥梁作用 注意:PS和BR尽量保持版本一致 下载和安装可通过CSDN社区搜索,有免费安装指导。 安装之后,我们打开照片只需双击照片,就自动在Ps软件中打开。 前提:电脑上有PS软件 三种预览格式 全屏预览 评星级 直接按数字键就可以 方向键可以更换图片 esc退出 幻灯片放

风水研究会官网源码系统-可展示自己的领域内容-商品售卖等

一款用于展示风水行业,周易测算行业,玄学行业的系统,并支持售卖自己的商品。 整洁大气,非常漂亮,前端内容均可通过后台修改。 大致功能: 支持前端内容通过后端自定义支持开启关闭会员功能,会员等级设置支持对接官方支付支持添加商品类支持添加虚拟下载类支持自定义其他类型字段支持生成虚拟激活卡支持采集其他站点文章支持对接收益广告支持文章评论支持积分功能支持推广功能更多功能,搭建完成自行体验吧! 原文

(1995-2022年) 全国各省份-技术交易活跃度

技术交易活跃度是一个关键指标,用于衡量技术市场的交易频繁程度和活跃性。它不仅显示了市场参与者对技术交易的参与热情,而且交易的频率也体现了市场的活力。这一指标对于不同的利益相关者具有不同的意义: 对投资者而言,技术交易活跃度是把握市场趋势、评估交易策略和预测市场波动的重要工具。对企业来说,技术交易活跃度反映了其技术创新的活跃程度和市场竞争的激烈程度,有助于企业制定技术创新和市场竞争策略。对政策制定

Django 路由系统详解

Django 路由系统详解 引言 Django 是一个高级 Python Web 框架,它鼓励快速开发和干净、实用的设计。在 Django 中,路由系统是其核心组件之一,负责将用户的请求映射到相应的视图函数或类。本文将深入探讨 Django 的路由系统,包括其工作原理、配置方式以及高级功能。 目录 路由基础URL 映射路由参数命名空间URL 反向解析路由分发include 路由路由修饰符自

【图像识别系统】昆虫识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50

一、介绍 昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集(‘蜜蜂’, ‘甲虫’, ‘蝴蝶’, ‘蝉’, ‘蜻蜓’, ‘蚱蜢’, ‘蛾’, ‘蝎子’, ‘蜗牛’, ‘蜘蛛’)进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一

OSG数学基础:坐标系统

坐标系是一个精确定位对象位置的框架,所有的图形变换都是基于一定的坐标系进行的。三维坐标系总体上可以分为两大类:左手坐标系和右手坐标系。常用的坐标系:世界坐标系、物体坐标系和摄像机坐标系。 世界坐标系 世界坐标系是一个特殊的坐标系,它建立了描述其他坐标系所需要的参考框架。从另一方面说,能够用世界坐标系来描述其他坐标系的位置,而不能用更大的、外部的坐标系来描述世界坐标系。世界坐标系也被广泛地

LoRaWAN在嵌入式网络通信中的应用:打造高效远程监控系统(附代码示例)

引言 随着物联网(IoT)技术的发展,远程监控系统在各个领域的应用越来越广泛。LoRaWAN(Long Range Wide Area Network)作为一种低功耗广域网通信协议,因其长距离传输、低功耗和高可靠性等特点,成为实现远程监控的理想选择。本文将详细介绍LoRaWAN的基本原理、应用场景,并通过一个具体的项目展示如何使用LoRaWAN实现远程监控系统。希望通过图文并茂的讲解,帮助读