【洛谷 P3397】地毯 题解(前缀和+差分+枚举)

2024-04-18 11:28

本文主要是介绍【洛谷 P3397】地毯 题解(前缀和+差分+枚举),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

地毯

题目描述

n × n n\times n n×n 的格子上有 m m m 个地毯。

给出这些地毯的信息,问每个点被多少个地毯覆盖。

输入格式

第一行,两个正整数 n , m n,m n,m。意义如题所述。

接下来 m m m 行,每行两个坐标 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2),代表一块地毯,左上角是 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),右下角是 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)

输出格式

输出 n n n 行,每行 n n n 个正整数。

i i i 行第 j j j 列的正整数表示 ( i , j ) (i,j) (i,j) 这个格子被多少个地毯覆盖。

样例 #1

样例输入 #1

5 3
2 2 3 3
3 3 5 5
1 2 1 4

样例输出 #1

0 1 1 1 0
0 1 1 0 0
0 1 2 1 1
0 0 1 1 1
0 0 1 1 1

提示

样例解释

覆盖第一个地毯后:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

覆盖第一、二个地毯后:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 2 2 2 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

覆盖所有地毯后:

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 2 2 2 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

数据范围

对于 20 % 20\% 20% 的数据,有 n ≤ 50 n\le 50 n50 m ≤ 100 m\le 100 m100

对于 100 % 100\% 100% 的数据,有 n , m ≤ 1000 n,m\le 1000 n,m1000


思路

首先定义一些常量和别名。定义 long long 类型的别名 ll,并且定义了两个全局变量 nm。同时定义了两个二维数组 diffpfs,用于存储差分数组和前缀和数组。

main 函数中,首先使用 memset 函数将 diffpfs 数组初始化为 0。然后从输入中读取 nm

接下来的循环中,读取每个地毯的左上角和右下角的坐标 (x1, y1)(x2, y2)。在这个循环中,使用了二维差分数组的技术。对于每个地毯,将 diff[j][y1] 加一,将 diff[j][y2 + 1] 减一。这样做的目的是在计算前缀和时,可以得到每个格子被多少个地毯覆盖。

在接下来的循环中,计算每个格子的前缀和,将结果存储在 pfs 数组中。同时,将 pfs[i][j] 输出,表示 (i, j) 这个格子被多少个地毯覆盖。

注意

输出应注意x轴和y轴的方向。如果发现输出方向反了,调换一下x和y即可。


AC代码

#include <algorithm>
#include <cstring>
#include <iostream>
#define AUTHOR "HEX9CF"
using namespace std;
using ll = long long;const int N = 1e4 + 7;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;ll n, m;
ll diff[N][N];
ll pfs[N][N];int main() {ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);memset(diff, 0, sizeof(diff));memset(pfs, 0, sizeof(pfs));cin >> n >> m;for (int i = 1; i <= m; i++) {ll x1, y1, x2, y2;cin >> x1 >> y1 >> x2 >> y2;for (int j = x1; j <= x2; j++) {diff[j][y1]++;diff[j][y2 + 1]--;}}for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {pfs[i][j] = pfs[i][j - 1] + diff[i][j];cout << pfs[i][j] << " ";}cout << "\n";}return 0;
}

这篇关于【洛谷 P3397】地毯 题解(前缀和+差分+枚举)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914652

相关文章

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

poj 3159 (spfa差分约束最短路) poj 1201

poj 3159: 题意: 每次给出b比a多不多于c个糖果,求n最多比1多多少个糖果。 解析: 差分约束。 这个博客讲差分约束讲的比较好: http://www.cnblogs.com/void/archive/2011/08/26/2153928.html 套个spfa。 代码: #include <iostream>#include <cstdio>#i

hdu 2489 (dfs枚举 + prim)

题意: 对于一棵顶点和边都有权值的树,使用下面的等式来计算Ratio 给定一个n 个顶点的完全图及它所有顶点和边的权值,找到一个该图含有m 个顶点的子图,并且让这个子图的Ratio 值在所有m 个顶点的树中最小。 解析: 因为数据量不大,先用dfs枚举搭配出m个子节点,算出点和,然后套个prim算出边和,每次比较大小即可。 dfs没有写好,A的老泪纵横。 错在把index在d

poj 3169 spfa 差分约束

题意: 给n只牛,这些牛有些关系。 ml个关系:fr 与 to 牛间的距离要小于等于 cost。 md个关系:fr 与 to 牛间的距离要大于等于 cost。 隐含关系: d[ i ] <= d[ i + 1 ] 解析: 用以上关系建图,求1-n间最短路即可。 新学了一种建图的方法。。。。。。 代码: #include <iostream>#include

C++ | Leetcode C++题解之第393题UTF-8编码验证

题目: 题解: class Solution {public:static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num &

POJ 1364差分约束

给出n个变量,m个约束公式 Sa + Sa+1 + .... + Sa+b < ki or > ki ,叫你判断是否存在着解满足这m组约束公式。 Sa + Sa+1   +   .+ Sa+b =  Sum[a+b] - Sum[a-1]  . 注意加入源点n+1 。 public class Main {public static void main(Strin

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn