Abaqus python二次开发2-扭转弹簧刚度计算

2024-04-18 11:20

本文主要是介绍Abaqus python二次开发2-扭转弹簧刚度计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Abaqus python二次开发2-扭转弹簧刚度计算

  • 1、定义弹簧参数
  • 2、绘制弹簧
    • 2.1、绘制弹簧截面
    • 2.12、绘制弹簧实体part(螺旋旋转截面)
  • 3、设置材料、截面属性、并赋给弹簧(set)
  • 4、创建组件的坐标系、参考点和instance(弹簧)
  • 5、==用 findAt() 找到==边界面,并设置边界面集合和参考点集合
  • 6、设置step、场输出(==支反力等==)、RB2、约束边界BC及==变更(转半圈)==
  • 7、网格划分
    • 7.1、按曲线长度归类(==比较边getSize()与圆周长==),圆为一类(布16节点),扫描线为一类(按长度布点)
    • 7.2、布种子、画网格
  • 8、新建Job、计算
  • 9、从ODB看支反力矩

1、定义弹簧参数

# -*- coding: mbcs -*-
from abaqus import *
from abaqusConstants import *
from caeModules import *
from math import *
from odbAccess import *wireR=1.0#
SpringR=15.0#
NN=8
GapR=0.3
angle=5.0#degree
Spitch=wireR*(2.0+GapR)/cos(angle/180.0*pi)#
DR=wireR+SpringR
RatioRr=SpringR/wireR
ur2 = pi

2、绘制弹簧

2.1、绘制弹簧截面

inpName='SoildSpring_Rr'+str(int(RatioRr))
Mdb()
TheModel = mdb.models['Model-1']
s = TheModel .ConstrainedSketch(name='springSection', sheetSize=200.0)
s.ConstructionLine(point1=(0.0, -100.0), point2=(0.0, 100.0))
s.CircleByCenterPerimeter(center=(DR, 0.0), point1=(DR+wireR, 0.0))

在这里插入图片描述

2.12、绘制弹簧实体part(螺旋旋转截面)

p = TheModel .Part(name='spring', dimensionality=THREE_D, type=DEFORMABLE_BODY)
p.BaseSolidRevolve(sketch=s, angle=360.0*(NN+1), flipRevolveDirection=OFF, pitch=Spitch, flipPitchDirection=OFF, moveSketchNormalToPath=ON)

在这里插入图片描述

3、设置材料、截面属性、并赋给弹簧(set)

TheMaterial = TheModel .Material(name='steel')
TheMaterial.Elastic(table=((210000.0, 0.3), ))
TheModel .HomogeneousSolidSection(name='SteelSection', material='steel', thickness=None)
c = p.cells
secSet = p.Set(name='secSet', cells=c)
p.SectionAssignment(region=secSet, sectionName='SteelSection', offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='', thicknessAssignment=FROM_SECTION)

在这里插入图片描述

4、创建组件的坐标系、参考点和instance(弹簧)

a = TheModel .rootAssembly
a.DatumCsysByDefault(CARTESIAN)
a.Instance(name='spring-1', part=p, dependent=ON)
p1=a.ReferencePoint(point=(0.0,0.0,0.0))
p2=a.ReferencePoint(point=(0.0,-1.0*(NN+1)*Spitch,0.0))

在这里插入图片描述

5、用 findAt() 找到边界面,并设置边界面集合和参考点集合

xx1=SpringR*cos(0.5*pi)
zz1=SpringR*sin(0.5*pi)
yy1=-0.25*Spitch
xx2=SpringR*cos((NN+0.75)*2.0*pi)
zz2=SpringR*sin((NN+0.75)*2.0*pi)
yy2=-1.0*(NN+0.75)*Spitch
f = a.instances['spring-1'].faces
faces1 = f.findAt(((xx2, yy2, zz2),),)
Setfix=a.Set(faces=faces1, name='Set-fix')
faces1 = f.findAt(((xx1, yy1, zz1),),)
Settwist=a.Set(faces=faces1, name='Set-twist')
r1 = a.referencePoints
SetfixRP=a.Set(referencePoints=(r1[p2.id],), name='Set-fixRP')
SettwistRP=a.Set(referencePoints=(r1[p1.id],), name='Set-twistRP')

在这里插入图片描述

6、设置step、场输出(支反力等)、RB2、约束边界BC及变更(转半圈)

TheModel .StaticStep(name='Step-twist', previous='Initial',initialInc=0.05, minInc=1e-06, maxInc=0.2, maxNumInc=1000, nlgeom=ON)
TheModel .fieldOutputRequests['F-Output-1'].setValues(variables=('S', 'LE', 'U', 'RF', 'RM', 'CF'), numIntervals=10, timeMarks=OFF)
TheModel .Coupling(name='Constraint-fix', controlPoint=SetfixRP,surface=Setfix, influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC, localCsys=None, u1=ON, u2=ON, u3=ON, ur1=ON, ur2=ON, ur3=ON)
TheModel .Coupling(name='Constraint-twist', controlPoint=SettwistRP, surface=Settwist, influenceRadius=WHOLE_SURFACE,couplingType=KINEMATIC, localCsys=None, u1=ON, u2=ON, u3=ON, ur1=ON,ur2=ON, ur3=ON)
TheModel .DisplacementBC(name='BC-fix', createStepName='Initial',region=SetfixRP, u1=SET, u2=SET, u3=SET, ur1=SET, ur2=SET, ur3=SET, amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)
TheModel .DisplacementBC(name='BC-twist',createStepName='Initial', region=SettwistRP, u1=SET, u2=SET, u3=SET,ur1=SET, ur2=SET, ur3=SET, amplitude=UNSET, distributionType=UNIFORM,fieldName='', localCsys=None)
TheModel .boundaryConditions['BC-twist'].setValuesInStep(stepName='Step-twist', ur2=ur2)

在这里插入图片描述

7、网格划分

7.1、按曲线长度归类(比较边getSize()与圆周长),圆为一类(布16节点),扫描线为一类(按长度布点)

c = p.cells
p.setMeshControls(regions=c, technique=SWEEP)
NSize=16
LSize=DR*pi*2/64
e = p.edges
NEdges, LEdges, CriL = [], [], 2.0*pi*wireR
for i in range(len(e)):if abs(e[i].getSize()-CriL)/CriL<0.02:NEdges.append(e[i])else:LEdges.append(e[i])

7.2、布种子、画网格

p.seedEdgeByNumber(edges=NEdges, number=NSize, constraint=FIXED)
p.seedEdgeBySize(edges=LEdges, size=LSize, deviationFactor=0.1,constraint=FINER)
elemType1 = mesh.ElemType(elemCode=C3D8R, elemLibrary=STANDARD, kinematicSplit=AVERAGE_STRAIN, secondOrderAccuracy=OFF, hourglassControl=DEFAULT, distortionControl=DEFAULT)
elemType2 = mesh.ElemType(elemCode=C3D6, elemLibrary=STANDARD)
elemType3 = mesh.ElemType(elemCode=C3D4, elemLibrary=STANDARD)
p.setElementType(regions=(c,), elemTypes=(elemType1, elemType2, elemType3))
p.generateMesh()
a.regenerate()

在这里插入图片描述

8、新建Job、计算

mdb.Job(name=inpName, model='Model-1', description='', type=ANALYSIS, atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=50, memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True, explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='', scratch='', multiprocessingMode=DEFAULT, numCpus=1)
mdb.jobs[inpName].submit(consistencyChecking=OFF)
mdb.jobs[inpName].waitForCompletion()

在这里插入图片描述

9、从ODB看支反力矩

mdb.Job(name=inpName, model='Model-1', description='', type=ANALYSIS, atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=50, memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True, explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='', scratch='', multiprocessingMode=DEFAULT, numCpus=1)
mdb.jobs[inpName].submit(consistencyChecking=OFF)
mdb.jobs[inpName].waitForCompletion()
odbPath=inpName+'.odb'
odb = openOdb(odbPath)
nset = odb.rootAssembly.nodeSets['ASSEMBLY_CONSTRAINT-TWIST_REFERENCE_POINT']
frame=odb.steps.values()[-1].frames[-1]
foutput=frame.fieldOutputs['RM']
fvalues=foutput.getSubset(region=nset).values[0].data[1]
odb.close()
print fvalues

print fvalues
593.892

这篇关于Abaqus python二次开发2-扭转弹簧刚度计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914636

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核