Android Sensor Input类型 (四) Sensor HAL 实现

2024-04-18 10:58

本文主要是介绍Android Sensor Input类型 (四) Sensor HAL 实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

msm8909 Sensor HAL

代码路径:code/hardware/qcom/sensors/

核心作用:封装对 sensor的方法,不直接通过本地C库直接访问

├── Accelerometer.cpp
├── AccelSensor.h
├── AkmSensor.cpp
├── AkmSensor.h
├── algo
├── Android.mk
├── Bmp180.cpp
├── CalibrationManager.cpp
├── CalibrationManager.h
├── CalibrationModule.h
├── calmodule.cfg
├── CompassSensor.cpp
├── CompassSensor.h
├── Gyroscope.cpp
├── GyroSensor.h
├── InputEventReader.cpp
├── InputEventReader.h
├── LICENSE
├── LightSensor.cpp
├── LightSensor.h
├── NativeSensorManager.cpp
├── NativeSensorManager.h
├── PressureSensor.h
├── ProximitySensor.cpp
├── ProximitySensor.h
├── SensorBase.cpp
├── SensorBase.h
├── sensors.cpp
├── sensors_extension.h
├── sensors.h
├── sensors_XML.cpp
├── sensors_XML.h
├── SignificantMotion.cpp
├── SignificantMotion.h
├── VirtualSensor.cpp
└── VirtualSensor.h

重要文件有:

sensors.cpp

sensors.cpp 中提供数据机构架构,提供 hw_device_t 封装; 让其他层可以获得这个结构,得以使用其中的方法;

通过实现的结构可以发现,所有的操作都使用了, NativeSensorManager用来做具体的操作

NativeSensorManager.cpp

Native SensorManager 是个class,继承Singleton; 单例模式,只存在一个对象;

即被多次定义引用的对象 sm; 它的存在是统一管理sensor HAL的sensor访问;

将存在的sensor统一存在数组里,不针对sensor具体类型; 是HAL的实际操作者;

SensorBase.cpp

VirtualSensor.cpp

sensors主要设备结构

sensor_t

struct sensor_t {const char*     name;//!< sensor名称 By: jixuanconst char*     vendor;//!< 厂商名 By: jixuan int             version;int             handleint             type;//!< 类型标识 By: jixuanfloat           maxRange;float           resolution;//!< 解析度 即报告数值的最大差异范围 By: jixuan float           power;int32_t         minDelay;uint32_t        fifoReservedEventCount;uint32_t        fifoMaxEventCount;//!< 类型字符串 Note By: yujixuan const char*    stringType;//!< 权限 Note By: yujixuan const char*    requiredPermission;void*           reserved[2];
};

sensor_moudule_t

struct sensors_module_t {struct hw_module_t common;//!< hw_module_t 基础结构 >! NoteBy: yujixuan int (*get_sensors_list)(struct sensors_module_t* module,struct sensor_t const** list);//!< 拓展接口,获取sensor 列表 >! NoteBy:yujixuanint (*set_operation_mode)(unsigned int mode);//!< 操作设置sensor mode >! NoteBy: yujixuan
};//!< 定义 名为HMI的 hw_module_t 结构体(可以转型为包含它的具体设备类型,首地址保持相同),get_module 获取它 >! NoteBy: yujixuan
struct sensors_module_t HAL_MODULE_INFO_SYM = {common: {tag: HARDWARE_MODULE_TAG,  //!< 固定名 >! NoteBy: yujixuanversion_major: 1,version_minor: 0,id: SENSORS_HARDWARE_MODULE_ID, name: "Quic Sensor module",author: "Quic",methods: &sensors_module_methods,  //!< hw_module_t 必要填充的方法 >! NoteBy: yujixuandso: NULL,reserved: {0},},get_sensors_list: sensors__get_sensors_list,  //!< sensor_module_t 拓展的方法 >! NoteBy: yujixuan
};
static struct hw_module_methods_t sensors_module_methods = {open: open_sensors  //!< 只有一个open函数,它的作用是返回具体的 device >! NoteBy: yujixuan
};
//!< 打开一个新的sensor 实例 填充具体的hw_device_t>! NoteBy: yujixuan

open函数实现:open_sensors

#define HAL_MODULE_INFO_SYM        HMI
#define HAL_MODULE_INFO_SYM_AS_STR  "HMI"static int open_sensors(const struct hw_module_t* module, const char*,struct hw_device_t** device)
{int status = -EINVAL;sensors_poll_context_t *dev = new sensors_poll_context_t();NativeSensorManager& sm(NativeSensorManager::getInstance());memset(&dev->device, 0, sizeof(sensors_poll_device_1_ext_t));dev->device.common.tag = HARDWARE_DEVICE_TAG;
#if defined(SENSORS_DEVICE_API_VERSION_1_3)ALOGI("Sensors device API version 1.3 supported\n");dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_3;
#elsedev->device.common.version = SENSORS_DEVICE_API_VERSION_0_1;
#endifdev->device.common.module   = const_cast<hw_module_t*>(module);dev->device.common.close	= poll__close;dev->device.activate		= poll__activate;dev->device.setDelay		= poll__setDelay;dev->device.poll		= poll__poll;dev->device.calibrate		= poll_calibrate;
#if defined(SENSORS_DEVICE_API_VERSION_1_3)dev->device.batch		= poll__batch;dev->device.flush		= poll__flush;
#endif*device = &dev->device.common;status = 0;return status;
}

open_sensors新的sensor 实例,首先new了一个sensors_poll_context_tdevice ,然后设置该device,并返回 给到调用者;

针对 sensors_poll_context_t 下面内容会做具体分析;

static int sensors__get_sensors_list(struct sensors_module_t*,struct sensor_t const** list)
{NativeSensorManager& sm(NativeSensorManager::getInstance());return sm.getSensorList(list);
}

拓展的sensors_module_t 中添加了 get_sensor_list方法;

可以看到它是通过NativeSensorManger 来做具体的Hal层访问;

Sensor服务用户程序不能直接访问,通过NativeSensorManager来访问。 (note: nativeSensorManager是指在HAL中的管理sensor的设备结构,需要区别于Android Framework中的SensorManager)

里面使用了NativeSensorManagersensors__get_sensors_list函数中调用单例模式创建了一个实例sm,通过调用其中的成员函数获取传感器列表,并返回,返回值对应的sensor_t结构体;NativeSensorManager统一管理着所有的传感器、物理和虚拟传感器;

SensorHAL 解析

Native Sensor Hal框架中,最为主要的内容即是 open函数中对device的回调设置;简单的可以理解为是上层函数与调用底层驱动的桥接;

所以在Hal这个层次应着重分析这块内容;,由上可知,当前的代码里是通过sensors_poll_context_t来定义一个device; 以下是 sensors_poll_context_t 的内容:

sensors_poll_context_t

struct sensors_poll_context_t {// extension for sensors_poll_device_1, must be firststruct sensors_poll_device_1_ext_t device;// must be first//!< 必须放在首个位置,它是个联合体,首个属性是 hw_device_t; >! NoteBy: yujixuansensors_poll_context_t();~sensors_poll_context_t();//!<struct同样有构造函数,析构函数,完成重要的初始化功能 >! NoteBy: yujixuanint activate(int handle, int enabled);int setDelay(int handle, int64_t ns);int pollEvents(sensors_event_t* data, int count);int calibrate(int handle, cal_cmd_t *para);int batch(int handle, int sample_ns, int latency_ns);int flush(int handle);private:static const size_t wake = MAX_SENSORS;static const char WAKE_MESSAGE = 'W';struct pollfd mPollFds[MAX_SENSORS+1];int mWritePipeFd;SensorBase* mSensors[MAX_SENSORS];mutable Mutex mLock;
};

通过open函数返回的的是hw_device_t,实际是传入的地址值;只要保证,包含此结构,且sensors_poll_device_1_ext_t放在首位,可以向上转型回具体的sensor

设备device;

实际device的函数调用 都是拓展的;比如上面的 activate; setDelay; pollEvents;等;

struct sensors_poll_device_1_ext_t {union {struct sensors_poll_device_1 aosp;struct {struct hw_device_t common;int (*activate)(struct sensors_poll_device_t *dev,int handle, int enabled);int (*setDelay)(struct sensors_poll_device_t *dev,int handle, int64_t period_ns);int (*poll)(struct sensors_poll_device_t *dev,sensors_event_t* data, int count);int (*batch)(struct sensors_poll_device_1* dev,int handle, int flags, int64_t period_ns, int64_t timeout);int (*flush)(struct sensors_poll_device_1* dev, int handle);void (*reserved_procs[8])(void);};};struct sensors_poll_device_t {struct hw_device_t common;int (*activate)(struct sensors_poll_device_t *dev,int sensor_handle, int enabled);int (*setDelay)(struct sensors_poll_device_t *dev,int sensor_handle, int64_t sampling_period_ns);int (*poll)(struct sensors_poll_device_t *dev,sensors_event_t* data, int count);
};

通过sensors_poll_device_1_ext_t也可以看出,实际sensors_poll_context_t 可以是sensors_poll_device_t

这是面向对象 多态的思想方式; 获取到的device根据具体的类型,再转换为具体的 device进行函数调用;

实际device的函数调用 都是拓展的;比如上面的 activate; setDelay; pollEvents;等;

在open函数中,new一个实例对象;sensors_poll_context_t会调用其构造函数完成最重要的初始化功能,如下:

sensors_poll_context_t::sensors_poll_context_t()
{int number;int i;const struct sensor_t *slist; const struct SensorContext *context;NativeSensorManager& sm(NativeSensorManager::getInstance());number = sm.getSensorList(&slist);//!< 获取sensor个数; 与sensor构成的链表list >! NoteBy: yujixuan/* use the dynamic sensor list */for (i = 0; i < number; i++) {context = sm.getInfoByHandle(slist[i].handle);mPollFds[i].fd = (context == NULL) ? -1 : context->data_fd;mPollFds[i].events = POLLIN;mPollFds[i].revents = 0;}ALOGI("The avaliable sensor handle number is %d",i);int wakeFds[2];int result = pipe(wakeFds);ALOGE_IF(result<0, "error creating wake pipe (%s)", strerror(errno));fcntl(wakeFds[0], F_SETFL, O_NONBLOCK);fcntl(wakeFds[1], F_SETFL, O_NONBLOCK);mWritePipeFd = wakeFds[1];mPollFds[number].fd = wakeFds[0];mPollFds[number].events = POLLIN;mPollFds[number].revents = 0;
}

构造函数中,通过NativeSensorManager 获取了sensor 列表;

通过struct SensorContext *context;

context = sm.getInfoByHandle(slist[i].handle);

维系记录了handle对应的SensorContext对象指针的句柄;SensorContext 的结构如下:

SensorContext

struct SensorContext {char   name[SYSFS_MAXLEN]; // name of the sensorchar   vendor[SYSFS_MAXLEN]; // vendor of the sensorchar   enable_path[PATH_MAX]; // the control path of this sensorchar   data_path[PATH_MAX]; // the data path to get sensor eventsstruct sensor_t *sensor; // point to the sensor_t structure in the sensor listSensorBase     *driver; // point to the sensor driver instanceint data_fd; // the file descriptor of the data device nodeint enable; // indicate if the sensor is enabledbool is_virtual; // indicate if this is a virtual sensorint64_t delay_ns; // the poll delay setting of this sensorint64_t latency_ns; // the max report latency of this sensorstruct listnode dep_list; // the background sensor type needed for this sensorstruct listnode listener; // the head of listeners of this sensor
};

从上可以看出: SensorContext中的 SensorBase *driver; 指向了具体的sensor实例;

在构造函数中,还完成了pollfd即mPollFds用来监听senso时用的文件描述符;

open函数的后面的部分,也就是对sensors_poll_context_t 拓展的那些方法的链接;

比如:

        dev->device.common.close    = poll__close;dev->device.activate        = poll__activate;dev->device.setDelay        = poll__setDelay;dev->device.poll        = poll__poll;dev->device.calibrate        = poll_calibrate;

poll函数分析

这里分析下,最重要的一个函数 poll__poll;

static int poll__poll(struct sensors_poll_device_t *dev,sensors_event_t* data, int count) {sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;//!< 这里就用到了 向上转型;将sensor_poll_device_t 转为 sensor_poll_context_t >! NoteBy: yujixuanreturn ctx->pollEvents(data, count);//!< 返回pollEvents >! NoteBy: yujixuan
}
int sensors_poll_context_t::pollEvents(sensors_event_t* data, int count)
{int nbEvents = 0;int n = 0;NativeSensorManager& sm(NativeSensorManager::getInstance());const sensor_t *slist;int number = sm.getSensorList(&slist);do {// see if we have some leftover from the last poll()for (int i = 0 ; count && i < number ; i++) {if ((mPollFds[i].revents & POLLIN) || (sm.hasPendingEvents(slist[i].handle))) {Mutex::Autolock _l(mLock);int nb = sm.readEvents(slist[i].handle, data, count);if (nb < 0) {ALOGE("readEvents failed.(%d)", errno);return nb;}if (nb <= count) {// no more data for this sensormPollFds[i].revents = 0;}count -= nb;nbEvents += nb;data += nb;}}if (count) {// we still have some room, so try to see if we can get// some events immediately or just wait if we don't have// anything to returndo {n = poll(mPollFds, number + 1, nbEvents ? 0 : -1);} while (n < 0 && errno == EINTR);if (n<0) {ALOGE("poll() failed (%s)", strerror(errno));return -errno;}if (mPollFds[number].revents & POLLIN) {char msg;int result = read(mPollFds[number].fd, &msg, 1);ALOGE_IF(result<0, "error reading from wake pipe (%s)", strerror(errno));ALOGE_IF(msg != WAKE_MESSAGE, "unknown message on wake queue (0x%02x)", int(msg));mPollFds[number].revents = 0;}}// if we have events and space, go read them} while (n && count);return nbEvents;
}

主要函数:sm.readEvents(slist[i].handle, data, count);

NativeSensorManager::readEvents中调用了:

nb = list->driver->readEvents(data, count);

list->driver是一个SensorBase结构体,SensorBase结构体的函数readEvents,

这里就需要联合 nativesensormanger的实现来看具体的读取流程;

nativesensormanger相关内容,在后续的内容中分析;

这篇关于Android Sensor Input类型 (四) Sensor HAL 实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914588

相关文章

Java StringBuilder 实现原理全攻略

《JavaStringBuilder实现原理全攻略》StringBuilder是Java提供的可变字符序列类,位于java.lang包中,专门用于高效处理字符串的拼接和修改操作,本文给大家介绍Ja... 目录一、StringBuilder 基本概述核心特性二、StringBuilder 核心实现2.1 内部

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文

在Android中使用WebView在线查看PDF文件的方法示例

《在Android中使用WebView在线查看PDF文件的方法示例》在Android应用开发中,有时我们需要在客户端展示PDF文件,以便用户可以阅读或交互,:本文主要介绍在Android中使用We... 目录简介:1. WebView组件介绍2. 在androidManifest.XML中添加Interne

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx