Android Sensor Input类型 (四) Sensor HAL 实现

2024-04-18 10:58

本文主要是介绍Android Sensor Input类型 (四) Sensor HAL 实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

msm8909 Sensor HAL

代码路径:code/hardware/qcom/sensors/

核心作用:封装对 sensor的方法,不直接通过本地C库直接访问

├── Accelerometer.cpp
├── AccelSensor.h
├── AkmSensor.cpp
├── AkmSensor.h
├── algo
├── Android.mk
├── Bmp180.cpp
├── CalibrationManager.cpp
├── CalibrationManager.h
├── CalibrationModule.h
├── calmodule.cfg
├── CompassSensor.cpp
├── CompassSensor.h
├── Gyroscope.cpp
├── GyroSensor.h
├── InputEventReader.cpp
├── InputEventReader.h
├── LICENSE
├── LightSensor.cpp
├── LightSensor.h
├── NativeSensorManager.cpp
├── NativeSensorManager.h
├── PressureSensor.h
├── ProximitySensor.cpp
├── ProximitySensor.h
├── SensorBase.cpp
├── SensorBase.h
├── sensors.cpp
├── sensors_extension.h
├── sensors.h
├── sensors_XML.cpp
├── sensors_XML.h
├── SignificantMotion.cpp
├── SignificantMotion.h
├── VirtualSensor.cpp
└── VirtualSensor.h

重要文件有:

sensors.cpp

sensors.cpp 中提供数据机构架构,提供 hw_device_t 封装; 让其他层可以获得这个结构,得以使用其中的方法;

通过实现的结构可以发现,所有的操作都使用了, NativeSensorManager用来做具体的操作

NativeSensorManager.cpp

Native SensorManager 是个class,继承Singleton; 单例模式,只存在一个对象;

即被多次定义引用的对象 sm; 它的存在是统一管理sensor HAL的sensor访问;

将存在的sensor统一存在数组里,不针对sensor具体类型; 是HAL的实际操作者;

SensorBase.cpp

VirtualSensor.cpp

sensors主要设备结构

sensor_t

struct sensor_t {const char*     name;//!< sensor名称 By: jixuanconst char*     vendor;//!< 厂商名 By: jixuan int             version;int             handleint             type;//!< 类型标识 By: jixuanfloat           maxRange;float           resolution;//!< 解析度 即报告数值的最大差异范围 By: jixuan float           power;int32_t         minDelay;uint32_t        fifoReservedEventCount;uint32_t        fifoMaxEventCount;//!< 类型字符串 Note By: yujixuan const char*    stringType;//!< 权限 Note By: yujixuan const char*    requiredPermission;void*           reserved[2];
};

sensor_moudule_t

struct sensors_module_t {struct hw_module_t common;//!< hw_module_t 基础结构 >! NoteBy: yujixuan int (*get_sensors_list)(struct sensors_module_t* module,struct sensor_t const** list);//!< 拓展接口,获取sensor 列表 >! NoteBy:yujixuanint (*set_operation_mode)(unsigned int mode);//!< 操作设置sensor mode >! NoteBy: yujixuan
};//!< 定义 名为HMI的 hw_module_t 结构体(可以转型为包含它的具体设备类型,首地址保持相同),get_module 获取它 >! NoteBy: yujixuan
struct sensors_module_t HAL_MODULE_INFO_SYM = {common: {tag: HARDWARE_MODULE_TAG,  //!< 固定名 >! NoteBy: yujixuanversion_major: 1,version_minor: 0,id: SENSORS_HARDWARE_MODULE_ID, name: "Quic Sensor module",author: "Quic",methods: &sensors_module_methods,  //!< hw_module_t 必要填充的方法 >! NoteBy: yujixuandso: NULL,reserved: {0},},get_sensors_list: sensors__get_sensors_list,  //!< sensor_module_t 拓展的方法 >! NoteBy: yujixuan
};
static struct hw_module_methods_t sensors_module_methods = {open: open_sensors  //!< 只有一个open函数,它的作用是返回具体的 device >! NoteBy: yujixuan
};
//!< 打开一个新的sensor 实例 填充具体的hw_device_t>! NoteBy: yujixuan

open函数实现:open_sensors

#define HAL_MODULE_INFO_SYM        HMI
#define HAL_MODULE_INFO_SYM_AS_STR  "HMI"static int open_sensors(const struct hw_module_t* module, const char*,struct hw_device_t** device)
{int status = -EINVAL;sensors_poll_context_t *dev = new sensors_poll_context_t();NativeSensorManager& sm(NativeSensorManager::getInstance());memset(&dev->device, 0, sizeof(sensors_poll_device_1_ext_t));dev->device.common.tag = HARDWARE_DEVICE_TAG;
#if defined(SENSORS_DEVICE_API_VERSION_1_3)ALOGI("Sensors device API version 1.3 supported\n");dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_3;
#elsedev->device.common.version = SENSORS_DEVICE_API_VERSION_0_1;
#endifdev->device.common.module   = const_cast<hw_module_t*>(module);dev->device.common.close	= poll__close;dev->device.activate		= poll__activate;dev->device.setDelay		= poll__setDelay;dev->device.poll		= poll__poll;dev->device.calibrate		= poll_calibrate;
#if defined(SENSORS_DEVICE_API_VERSION_1_3)dev->device.batch		= poll__batch;dev->device.flush		= poll__flush;
#endif*device = &dev->device.common;status = 0;return status;
}

open_sensors新的sensor 实例,首先new了一个sensors_poll_context_tdevice ,然后设置该device,并返回 给到调用者;

针对 sensors_poll_context_t 下面内容会做具体分析;

static int sensors__get_sensors_list(struct sensors_module_t*,struct sensor_t const** list)
{NativeSensorManager& sm(NativeSensorManager::getInstance());return sm.getSensorList(list);
}

拓展的sensors_module_t 中添加了 get_sensor_list方法;

可以看到它是通过NativeSensorManger 来做具体的Hal层访问;

Sensor服务用户程序不能直接访问,通过NativeSensorManager来访问。 (note: nativeSensorManager是指在HAL中的管理sensor的设备结构,需要区别于Android Framework中的SensorManager)

里面使用了NativeSensorManagersensors__get_sensors_list函数中调用单例模式创建了一个实例sm,通过调用其中的成员函数获取传感器列表,并返回,返回值对应的sensor_t结构体;NativeSensorManager统一管理着所有的传感器、物理和虚拟传感器;

SensorHAL 解析

Native Sensor Hal框架中,最为主要的内容即是 open函数中对device的回调设置;简单的可以理解为是上层函数与调用底层驱动的桥接;

所以在Hal这个层次应着重分析这块内容;,由上可知,当前的代码里是通过sensors_poll_context_t来定义一个device; 以下是 sensors_poll_context_t 的内容:

sensors_poll_context_t

struct sensors_poll_context_t {// extension for sensors_poll_device_1, must be firststruct sensors_poll_device_1_ext_t device;// must be first//!< 必须放在首个位置,它是个联合体,首个属性是 hw_device_t; >! NoteBy: yujixuansensors_poll_context_t();~sensors_poll_context_t();//!<struct同样有构造函数,析构函数,完成重要的初始化功能 >! NoteBy: yujixuanint activate(int handle, int enabled);int setDelay(int handle, int64_t ns);int pollEvents(sensors_event_t* data, int count);int calibrate(int handle, cal_cmd_t *para);int batch(int handle, int sample_ns, int latency_ns);int flush(int handle);private:static const size_t wake = MAX_SENSORS;static const char WAKE_MESSAGE = 'W';struct pollfd mPollFds[MAX_SENSORS+1];int mWritePipeFd;SensorBase* mSensors[MAX_SENSORS];mutable Mutex mLock;
};

通过open函数返回的的是hw_device_t,实际是传入的地址值;只要保证,包含此结构,且sensors_poll_device_1_ext_t放在首位,可以向上转型回具体的sensor

设备device;

实际device的函数调用 都是拓展的;比如上面的 activate; setDelay; pollEvents;等;

struct sensors_poll_device_1_ext_t {union {struct sensors_poll_device_1 aosp;struct {struct hw_device_t common;int (*activate)(struct sensors_poll_device_t *dev,int handle, int enabled);int (*setDelay)(struct sensors_poll_device_t *dev,int handle, int64_t period_ns);int (*poll)(struct sensors_poll_device_t *dev,sensors_event_t* data, int count);int (*batch)(struct sensors_poll_device_1* dev,int handle, int flags, int64_t period_ns, int64_t timeout);int (*flush)(struct sensors_poll_device_1* dev, int handle);void (*reserved_procs[8])(void);};};struct sensors_poll_device_t {struct hw_device_t common;int (*activate)(struct sensors_poll_device_t *dev,int sensor_handle, int enabled);int (*setDelay)(struct sensors_poll_device_t *dev,int sensor_handle, int64_t sampling_period_ns);int (*poll)(struct sensors_poll_device_t *dev,sensors_event_t* data, int count);
};

通过sensors_poll_device_1_ext_t也可以看出,实际sensors_poll_context_t 可以是sensors_poll_device_t

这是面向对象 多态的思想方式; 获取到的device根据具体的类型,再转换为具体的 device进行函数调用;

实际device的函数调用 都是拓展的;比如上面的 activate; setDelay; pollEvents;等;

在open函数中,new一个实例对象;sensors_poll_context_t会调用其构造函数完成最重要的初始化功能,如下:

sensors_poll_context_t::sensors_poll_context_t()
{int number;int i;const struct sensor_t *slist; const struct SensorContext *context;NativeSensorManager& sm(NativeSensorManager::getInstance());number = sm.getSensorList(&slist);//!< 获取sensor个数; 与sensor构成的链表list >! NoteBy: yujixuan/* use the dynamic sensor list */for (i = 0; i < number; i++) {context = sm.getInfoByHandle(slist[i].handle);mPollFds[i].fd = (context == NULL) ? -1 : context->data_fd;mPollFds[i].events = POLLIN;mPollFds[i].revents = 0;}ALOGI("The avaliable sensor handle number is %d",i);int wakeFds[2];int result = pipe(wakeFds);ALOGE_IF(result<0, "error creating wake pipe (%s)", strerror(errno));fcntl(wakeFds[0], F_SETFL, O_NONBLOCK);fcntl(wakeFds[1], F_SETFL, O_NONBLOCK);mWritePipeFd = wakeFds[1];mPollFds[number].fd = wakeFds[0];mPollFds[number].events = POLLIN;mPollFds[number].revents = 0;
}

构造函数中,通过NativeSensorManager 获取了sensor 列表;

通过struct SensorContext *context;

context = sm.getInfoByHandle(slist[i].handle);

维系记录了handle对应的SensorContext对象指针的句柄;SensorContext 的结构如下:

SensorContext

struct SensorContext {char   name[SYSFS_MAXLEN]; // name of the sensorchar   vendor[SYSFS_MAXLEN]; // vendor of the sensorchar   enable_path[PATH_MAX]; // the control path of this sensorchar   data_path[PATH_MAX]; // the data path to get sensor eventsstruct sensor_t *sensor; // point to the sensor_t structure in the sensor listSensorBase     *driver; // point to the sensor driver instanceint data_fd; // the file descriptor of the data device nodeint enable; // indicate if the sensor is enabledbool is_virtual; // indicate if this is a virtual sensorint64_t delay_ns; // the poll delay setting of this sensorint64_t latency_ns; // the max report latency of this sensorstruct listnode dep_list; // the background sensor type needed for this sensorstruct listnode listener; // the head of listeners of this sensor
};

从上可以看出: SensorContext中的 SensorBase *driver; 指向了具体的sensor实例;

在构造函数中,还完成了pollfd即mPollFds用来监听senso时用的文件描述符;

open函数的后面的部分,也就是对sensors_poll_context_t 拓展的那些方法的链接;

比如:

        dev->device.common.close    = poll__close;dev->device.activate        = poll__activate;dev->device.setDelay        = poll__setDelay;dev->device.poll        = poll__poll;dev->device.calibrate        = poll_calibrate;

poll函数分析

这里分析下,最重要的一个函数 poll__poll;

static int poll__poll(struct sensors_poll_device_t *dev,sensors_event_t* data, int count) {sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;//!< 这里就用到了 向上转型;将sensor_poll_device_t 转为 sensor_poll_context_t >! NoteBy: yujixuanreturn ctx->pollEvents(data, count);//!< 返回pollEvents >! NoteBy: yujixuan
}
int sensors_poll_context_t::pollEvents(sensors_event_t* data, int count)
{int nbEvents = 0;int n = 0;NativeSensorManager& sm(NativeSensorManager::getInstance());const sensor_t *slist;int number = sm.getSensorList(&slist);do {// see if we have some leftover from the last poll()for (int i = 0 ; count && i < number ; i++) {if ((mPollFds[i].revents & POLLIN) || (sm.hasPendingEvents(slist[i].handle))) {Mutex::Autolock _l(mLock);int nb = sm.readEvents(slist[i].handle, data, count);if (nb < 0) {ALOGE("readEvents failed.(%d)", errno);return nb;}if (nb <= count) {// no more data for this sensormPollFds[i].revents = 0;}count -= nb;nbEvents += nb;data += nb;}}if (count) {// we still have some room, so try to see if we can get// some events immediately or just wait if we don't have// anything to returndo {n = poll(mPollFds, number + 1, nbEvents ? 0 : -1);} while (n < 0 && errno == EINTR);if (n<0) {ALOGE("poll() failed (%s)", strerror(errno));return -errno;}if (mPollFds[number].revents & POLLIN) {char msg;int result = read(mPollFds[number].fd, &msg, 1);ALOGE_IF(result<0, "error reading from wake pipe (%s)", strerror(errno));ALOGE_IF(msg != WAKE_MESSAGE, "unknown message on wake queue (0x%02x)", int(msg));mPollFds[number].revents = 0;}}// if we have events and space, go read them} while (n && count);return nbEvents;
}

主要函数:sm.readEvents(slist[i].handle, data, count);

NativeSensorManager::readEvents中调用了:

nb = list->driver->readEvents(data, count);

list->driver是一个SensorBase结构体,SensorBase结构体的函数readEvents,

这里就需要联合 nativesensormanger的实现来看具体的读取流程;

nativesensormanger相关内容,在后续的内容中分析;

这篇关于Android Sensor Input类型 (四) Sensor HAL 实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914588

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组