大数据:【学习笔记系列】Flink基础架构

2024-04-18 08:36

本文主要是介绍大数据:【学习笔记系列】Flink基础架构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apache Flink 是一个开源的流处理框架,用于处理有界无界数据流。Flink 设计用于运行在所有常见的集群环境中,并且能够以高性能可扩展的方式进行实时数据处理和分析。下面将详细介绍 Flink 的基础架构组件和其工作原理。

1. Flink 架构概览

Flink 的架构主要包括以下几个核心组件:

  • JobManager (Master Node)
  • TaskManager (Worker Nodes)
  • Dispatcher and Resource Manager
  • Client
JobManager

JobManager 是 Flink 集群的核心节点,负责整个数据处理流程的管理协调。JobManager 的主要职责包括:

  • 作业调度:负责接受作业提交,解析和优化执行计划,然后将作业分解为任务并分配给 TaskManagers
  • 资源管理:决定作业的任务如何在 TaskManagers 上分配执行。
  • 故障恢复:管理检查点(Checkpoints),在任务执行失败时恢复作业状态。
  • 任务协调:协调 TaskManagers 之间的通信,如数据分发任务同步
TaskManager

TaskManager 是执行具体任务的节点,一个 Flink 集群可以有多个 TaskManager 节点。TaskManager 的主要功能是:

  • 任务执行:每个 TaskManager 可以并行执行多个任务,具体数量取决于其配置的 slot 数量。
  • 状态管理:管理本地的数据缓存任务的状态,参与状态的快照以实现故障恢复
  • 数据交换:处理节点间的数据传输
Dispatcher

Dispatcher 组件负责接收客户端的作业提交请求,并启动一个新的 JobMaster 实例来负责作业的执行。Dispatcher 提供了一个 REST 接口用于作业提交状态查询

Resource Manager

Resource Manager 负责管理 TaskManagers 的资源,例如分配回收。在 Flink 集群运行于容器化环境(如 Kubernetes)时,Resource Manager 也会与外部的资源管理系统交互,进行资源的动态调整

Client

Client 是用户与 Flink 集群交互的界面,用于提交作业、查询作业状态等。客户端通过向 Dispatcher 或 JobManager 提交作业描述(如 JAR 文件),启动作业的执行。

2. 数据处理流程

在 Flink 中,数据处理的流程通常包括以下几个步骤:

  1. 作业提交:用户通过Client提交作业到 Dispatcher,Dispatcher 创建作业的 JobGraph,并将其提交到 JobManager
  2. 作业调度:JobManager 将 JobGraph 转换为一个可执行的物理计划——ExecutionGraph,并决定如何在 TaskManagers 上分布这些任务。
  3. 任务执行:JobManager 将具体的任务分配给 TaskManager 的空闲 slots,TaskManagers 根据指令执行任务。
  4. 状态管理与故障恢复:在执行过程中,TaskManagers 定期向 JobManager 报告状态,JobManager 根据需要进行任务的重启状态回滚
  5. 结果输出:处理结果可以输出外部系统,如数据库、文件系统或其他存储系统。

3. 容错机制

Flink 的容错机制基于状态的一致性快照(checkpointing)。通过定期创建全局一致性的状态快照,当某个部分发生故障时,Flink 可以从最近的快照恢复整个作业的状态,继续执行,确保数据处理的精确一致性。

总结

Flink 的基础架构设计使其能够高效处理大规模数据流,支持复杂的数据处理任务和流式计算,同时提供高度的可扩展性和可靠性。通过其强大的容错机制,Flink 能够保证在发生故障时数据不丢失,处理不中断。这些特点使得 Flink 成为处理实时数据流的理想选择。

这篇关于大数据:【学习笔记系列】Flink基础架构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914283

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内