大数据:【学习笔记系列】Flink基础架构

2024-04-18 08:36

本文主要是介绍大数据:【学习笔记系列】Flink基础架构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apache Flink 是一个开源的流处理框架,用于处理有界无界数据流。Flink 设计用于运行在所有常见的集群环境中,并且能够以高性能可扩展的方式进行实时数据处理和分析。下面将详细介绍 Flink 的基础架构组件和其工作原理。

1. Flink 架构概览

Flink 的架构主要包括以下几个核心组件:

  • JobManager (Master Node)
  • TaskManager (Worker Nodes)
  • Dispatcher and Resource Manager
  • Client
JobManager

JobManager 是 Flink 集群的核心节点,负责整个数据处理流程的管理协调。JobManager 的主要职责包括:

  • 作业调度:负责接受作业提交,解析和优化执行计划,然后将作业分解为任务并分配给 TaskManagers
  • 资源管理:决定作业的任务如何在 TaskManagers 上分配执行。
  • 故障恢复:管理检查点(Checkpoints),在任务执行失败时恢复作业状态。
  • 任务协调:协调 TaskManagers 之间的通信,如数据分发任务同步
TaskManager

TaskManager 是执行具体任务的节点,一个 Flink 集群可以有多个 TaskManager 节点。TaskManager 的主要功能是:

  • 任务执行:每个 TaskManager 可以并行执行多个任务,具体数量取决于其配置的 slot 数量。
  • 状态管理:管理本地的数据缓存任务的状态,参与状态的快照以实现故障恢复
  • 数据交换:处理节点间的数据传输
Dispatcher

Dispatcher 组件负责接收客户端的作业提交请求,并启动一个新的 JobMaster 实例来负责作业的执行。Dispatcher 提供了一个 REST 接口用于作业提交状态查询

Resource Manager

Resource Manager 负责管理 TaskManagers 的资源,例如分配回收。在 Flink 集群运行于容器化环境(如 Kubernetes)时,Resource Manager 也会与外部的资源管理系统交互,进行资源的动态调整

Client

Client 是用户与 Flink 集群交互的界面,用于提交作业、查询作业状态等。客户端通过向 Dispatcher 或 JobManager 提交作业描述(如 JAR 文件),启动作业的执行。

2. 数据处理流程

在 Flink 中,数据处理的流程通常包括以下几个步骤:

  1. 作业提交:用户通过Client提交作业到 Dispatcher,Dispatcher 创建作业的 JobGraph,并将其提交到 JobManager
  2. 作业调度:JobManager 将 JobGraph 转换为一个可执行的物理计划——ExecutionGraph,并决定如何在 TaskManagers 上分布这些任务。
  3. 任务执行:JobManager 将具体的任务分配给 TaskManager 的空闲 slots,TaskManagers 根据指令执行任务。
  4. 状态管理与故障恢复:在执行过程中,TaskManagers 定期向 JobManager 报告状态,JobManager 根据需要进行任务的重启状态回滚
  5. 结果输出:处理结果可以输出外部系统,如数据库、文件系统或其他存储系统。

3. 容错机制

Flink 的容错机制基于状态的一致性快照(checkpointing)。通过定期创建全局一致性的状态快照,当某个部分发生故障时,Flink 可以从最近的快照恢复整个作业的状态,继续执行,确保数据处理的精确一致性。

总结

Flink 的基础架构设计使其能够高效处理大规模数据流,支持复杂的数据处理任务和流式计算,同时提供高度的可扩展性和可靠性。通过其强大的容错机制,Flink 能够保证在发生故障时数据不丢失,处理不中断。这些特点使得 Flink 成为处理实时数据流的理想选择。

这篇关于大数据:【学习笔记系列】Flink基础架构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914283

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.