校验用户画像的准确性

2024-04-18 04:48
文章标签 校验 用户 准确性 画像

本文主要是介绍校验用户画像的准确性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用户画像是数据运营的基础,也是做深度挖掘的一个不可或缺的模块。只有先打好画像基础,确保画像质量,后续的深挖行为才有突破的可能。

一. 用户画像开发中
    1.1 Recall、Pecision、K-S、F1曲线、Roc曲线、Confusion Matrix、AUC
    1.2  交叉验证
二. 用户画像上线后
三. 用户画像更新
    3.1 用户回访
    3.2 机制检测


在用户研究的课题中,用户画像是几乎每个公司都会去做的,浅层的包括统计类的:上月购买量,上周活跃天数等;深层的包括洞察类的:潜在需求偏好,生命周期阶段等;前者的校验简单,后者的校验需要通过一些特别的方式。本文就洞察类画像校验做一系列的梳理。

省略掉预处理设计的过程,画像校验的步骤主要集中在画像开发,画像上线,画像更新中,并且三个阶段中,每个阶段的校验方式不尽不同

一. 用户画像开发中

当我们所开发的用户画像是类似于用户的下单需求、用户的购车意愿、用户是否有注册意愿这一类存在历史的正负样本的有监督的问题,我们可以利用历史确定的数据来校验我们的画像准确性。比如,银行在设计用户征信的画像前,会有一批外部购买的坏样本和好样本,其实画像问题就转化为分类问题去解决评估了。

1.1 Recall、Pecision、K-S、F1曲线、Roc曲线、Confusion Matrix、AUC

针对这类问题,已经有较为成熟的理论基础,直接利用测试样本判断的准确程度判断画像是否准确

这张图是一张非常常见也是有效的来总结Recall、Pecision、Lift曲线、Roc曲线、Confusion Matrix的图。

FPR = FP/(FP + TN)

Recall=TPR=TP/(TP+FN)

Precision=TP/(TP+FP)

F1曲线:2*Precision*Recall/(Precision+Recall)

Roc曲线:TPR vs FPR,也就是Precision vs Recall

Auc:area under the roc curve ,也就是roc曲线下面的面积,积分或者投点法均可求解。

1.2  交叉验证

并不是所有画像都是有监督训练的画像,举个例子,用户的性别画像,是一个无监督的刻画,当你无法通过app端资料填写直接获取到的时候,你只能够通过其他数据特征的对用户进行分群。

首先,我们在总的数据集中筛选出所有关键影响特征,每次将筛选出的特征分为两块,测试特征训练特征,利用训练特征建立模型,再利用测试特征去判断模型是否合理(比如女鞋用户群的女鞋购买次数小于男性用户群,则次模型异常,删除),最后集成所有合理模型。

这样的逻辑中,我们将所有异常不合理的模型全部剔除,训练过程中就校验了用户画像的准确性。

二. 用户画像上线后

ABTest

不得不说,abtest是用户画像校验最为直观有效的校验方式。

用户分流模块:

一句话解释,就是A1=A2保证分配随机,A3好于A1+A2的效果检验画像是否准确?多准确?

三. 用户画像更新

3.1 用户回访

在画像刻画完成后,必然会存在画像优化迭代的过程,客服回访是非常常见且有效的方式。

比如,我们定义了一波潜在流失用户10万人,随机抽取1000人,进行回访,根据回访结果做文本挖掘,提取关键词,看消极词用户的占比;

(来源网络)

3.2 机制检测

再比如,我们定义了一波忠诚用户10万人,随机抽取100人,后台随机获取用户安装app的列表,看用户同类app的下载量数目的分布;

横轴为用户手机中同类竞品安装量的个数,纵轴为对应的随机抽样的100人中的个数。

  • 人群1分布为忠诚用户画像最准确的,同类app下载量集中在1附近,定义的用户极为准确
  • 人群2分布杂乱
  • 人群3分布在下降量异常高的数值附近,定义人群不准确

用户画像是数据运营的基础,也是做深度挖掘的一个不可或缺的模块。只有先打好画像基础,确保画像质量,后续的深挖行为才有突破的可能。

这篇关于校验用户画像的准确性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913803

相关文章

【Kubernetes】K8s 的安全框架和用户认证

K8s 的安全框架和用户认证 1.Kubernetes 的安全框架1.1 认证:Authentication1.2 鉴权:Authorization1.3 准入控制:Admission Control 2.Kubernetes 的用户认证2.1 Kubernetes 的用户认证方式2.2 配置 Kubernetes 集群使用密码认证 Kubernetes 作为一个分布式的虚拟

校验码:奇偶校验,CRC循环冗余校验,海明校验码

文章目录 奇偶校验码CRC循环冗余校验码海明校验码 奇偶校验码 码距:任何一种编码都由许多码字构成,任意两个码字之间最少变化的二进制位数就称为数据检验码的码距。 奇偶校验码的编码方法是:由若干位有效信息(如一个字节),再加上一个二进制位(校验位)组成校验码。 奇校验:整个校验码中1的个数为奇数 偶校验:整个校验码中1的个数为偶数 奇偶校验,可检测1位(奇数位)的错误,不可纠错。

vue2实践:el-table实现由用户自己控制行数的动态表格

需求 项目中需要提供一个动态表单,如图: 当我点击添加时,便添加一行;点击右边的删除时,便删除这一行。 至少要有一行数据,但是没有上限。 思路 这种每一行的数据固定,但是不定行数的,很容易想到使用el-table来实现,它可以循环读取:data所绑定的数组,来生成行数据,不同的是: 1、table里面的每一个cell,需要放置一个input来支持用户编辑。 2、最后一列放置两个b

家庭和学生用户笔记本电脑配置方案

2.6.1  家庭和学生用户笔记本电脑配置方案   2.6.1  家庭和学生用户笔记本电脑配置方案   普通家庭用户、学生用户主要用于上网、娱乐、学习等,这类用户要求笔记本电脑的各方面 功能比较均衡。在选购此类笔记本电脑时,主要考虑外观设计方面要比较时尚,而且性能上也要 够强,一些大型复杂的软件以及目前的主流游戏都要能够流畅地运行才行。   对于CPU方面,可以考虑目前主流的第二

Ubuntu ftp搭建--配置不同用户不同权限

一、安装VSFTP sudo apt-get install vsftpd 二、添加FTP用户 sudo mkdir /etc/vsftpdsudo useradd -m -d /home/vsftpd vsftpd --用户名为vsftpd,目录和用户名可以自己更改sudo vi /etc/vsftpd/ftpuser.txt --这个到时与vsftp的配置文件对应建立一

利用PL/SQL工具如何给指定用户分配权限

选中指定的表--右键--编辑--就出现右边的内容了,选择权限,分配用户某个权限就行了;

配置JAVA环境的时候,环境变量中administrator的用户变量和系统变量的区别?

迁移项目到新的服务器上: 需要Java运行环境时,经常要配置环境变量,如图所示 这里有administrator的用户变量(U),和系统变量(S), 那么,它们之间有什么区别呢? 简单的说,一个是当前用户使用,你用其它用户登陆,这个环境变量就不起作用了。 系统变量,是对所有用户都可使用的。 简单的说: 系统变量:不管以哪个用户名登陆到计算机都能使

web登录校验

基础登录功能 LoginController @PostMapping("/login")Result login(@RequestBody Emp emp) {log.info("前端,发送了一个登录请求");Emp e = empService.login(emp);return e!=null?Result.success():Result.error("用户" +"名或密码错误");

mysql用户管理 存储过程

1. 查看MySql的当前用户名 select user(); status;看看一下当前的一些状态 2.MYSQL中所有的用户名和其信息 mysql数据库的user表 3. grant 权限 on 应用范围(数据库表,方法等) to 用户(用@隔开,前面是用户名后面是主机名’ 用户名’@’主机名’) identified by 密码 require 要求什么的 with 对用