如何使用OSI七层模型的思路进行Linux网络问题排障?

2024-04-17 10:04

本文主要是介绍如何使用OSI七层模型的思路进行Linux网络问题排障?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在运维工作中,我们可能经常遇到诸如服务器无法远程连接、网站无法访问等各种网络问题。此时你是否想过,我们常背的OSI七层模型,能在处理这样的实际问题中发挥什么样的作用呢?

基于OSI架构的方法论,我们可以使用自下而上的方法论来进行网络故障排查。

什么是OSI模型

OSI,即开放系统互连(Open Systems Interconnection),该模型是一个概念框架,它将网络通信的功能划分为七个不同的层级。简单来说,OSI标准定义了不同计算机系统之间如何进行通信。七层模型自下而上分别为:
OSI七层模型

如何运用OSI模型排查网络故障

假设有一个托管在Linux服务器上的网站无法正常工作,那么我们可以使用OSI模型对问题进行有效分解。

物理层

物理层是最底层,这一层的关键组件是电缆、光纤等物理介质。在这个层次上,我们可以检查电源供应及设备状态,查看接口统计信息。常用的命令如ifconfigip link show

[root@ecs-91176055 ~]#  ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500inet 192.168.0.4  netmask 255.255.255.0  broadcast 192.168.0.255inet6 fe80::f816:3eff:fe03:78e  prefixlen 64  scopeid 0x20<link>inet6 2409:8c3c:ffff:3b10::1a  prefixlen 128  scopeid 0x0<global>ether fa:16:3e:03:07:8e  txqueuelen 1000  (Ethernet)RX packets 400  bytes 299740 (292.7 KiB)RX errors 0  dropped 0  overruns 0  frame 0TX packets 405  bytes 90337 (88.2 KiB)TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0lo: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536inet 127.0.0.1  netmask 255.0.0.0inet6 ::1  prefixlen 128  scopeid 0x10<host>loop  txqueuelen 1000  (Local Loopback)RX packets 32  bytes 2520 (2.4 KiB)RX errors 0  dropped 0  overruns 0  frame 0TX packets 32  bytes 2520 (2.4 KiB)TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0[root@ecs-91176055 ~]#  ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000link/ether fa:16:3e:03:07:8e brd ff:ff:ff:ff:ff:ff

如果结果中有接口显示down,则表明物理层未能正常运行。 有时候物理连接是正常的,但网卡并未激活,可以尝试使用如下命令拉起接口:

ifconfig eth0 up
# 或
ip link set eth0 up

另外ethtool也是非常有用的工具,它提供了查询和修改设置的能力,可以调整诸如速率、端口、自动协商等参数。

[root@ecs-91176055 ~]#  ethtool eth0
Settings for eth0:Supported ports: [  ]Supported link modes:   Not reportedSupported pause frame use: NoSupports auto-negotiation: NoSupported FEC modes: Not reportedAdvertised link modes:  Not reportedAdvertised pause frame use: NoAdvertised auto-negotiation: NoAdvertised FEC modes: Not reportedSpeed: Unknown!Duplex: Unknown! (255)Auto-negotiation: offPort: OtherPHYAD: 0Transceiver: internalLink detected: yes

数据链路层

数据链路层使连接到同一网络的两台设备能够传输数据。该层包含两个部分。第一个组成部分是介质访问控制(MAC)层,涉及硬件寻址和访问控制操作。第二个部分是逻辑链路层,它能够在不同媒介间建立逻辑连接。

本层常见问题之一是两台服务器无法建立连接,此时可以使用pingtraceroutearp以及Wireshark等工具对数据链路层进行测试,验证同一网络组内设备之间数据帧是否正确传输和接收。

网络层

网络层的作用是确保数据能够在两个网络之间顺畅流动,在网络层工作的设备是路由器。路由器的主要任务是简化网络之间的通信,处理IP地址是这一层的工作内容。

在这个阶段,我们主要应查找与IP地址相关的问题,例如可以通过ip -br address show来查看地址,确认网卡是否已分配到IP地址。

[root@ecs-91176055 ~]#  ip -br address show
lo               UNKNOWN        127.0.0.1/8 ::1/128 
eth0             UP             192.168.0.4/24 2409:8c3c:ffff:3b10::1a/128 fe80::f816:3eff:fe03:78e/64 

如果您使用DHCP获取IP地址,那么可能是没有从DHCP获得动态IP地址。

另一个常见的问题是缺少特定路由或路由指向错误,导致数据包无法通过网关发出或走到了错误的网关。了解数据报到达最终目的地址的路由,在排查跨网络通信时尤其重要。我们可以通过ip route命令查看和管理路由表,也可以通过向默认网关或远端网关发送ping请求来检查连通性。

[root@ecs-91176055 ~]#  ip route
default via 192.168.0.1 dev eth0 proto dhcp metric 100 
192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.4 metric 100 [root@ecs-91176055 ~]#  ip -6 route
::1 dev lo proto kernel metric 256 pref medium
2409:8c3c:ffff:3b10::1a dev eth0 proto kernel metric 100 pref medium
2409:8c3c:ffff:3b10::/64 dev eth0 proto ra metric 100 pref medium
fe80::/64 dev eth0 proto kernel metric 100 pref medium
default via fe80::6a54:edff:fe00:7f1c dev eth0 proto ra metric 100 pref medium[root@ecs-91176055 ~]#  ping 192.168.0.1 -c 4
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=0.095 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=0.096 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=0.097 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=0.120 ms--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3099ms
rtt min/avg/max/mdev = 0.095/0.102/0.120/0.010 ms

传输层

传输层使用传输控制协议(TCP)和用户数据报协议(UDP)等协议来控制系统间的网络流量,确保数据高效流动。传输层负责发送数据包,查找错误,控制数据流,并将其按序排列。

在这个层面遇到的问题,可能是监听端口未开启等。如果服务启动失败,可能是因为端口已被占用。可以运行netstatss命令查看哪些端口正在监听,并判断你需要连接的端口是否正由正确的程序监听。

[root@ecs-91176055 ~]#  netstat -ntupl
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name    
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN      1245/sshd: /usr/sbi 
tcp        0      0 0.0.0.0:44321           0.0.0.0:*               LISTEN      1478/pmcd           
tcp        0      0 0.0.0.0:4330            0.0.0.0:*               LISTEN      2752/pmlogger       
tcp        0      0 0.0.0.0:111             0.0.0.0:*               LISTEN      743/rpcbind         
tcp6       0      0 :::22                   :::*                    LISTEN      1245/sshd: /usr/sbi 
tcp6       0      0 :::44321                :::*                    LISTEN      1478/pmcd           
tcp6       0      0 :::4330                 :::*                    LISTEN      2752/pmlogger       
tcp6       0      0 :::111                  :::*                    LISTEN      743/rpcbind         
udp        0      0 0.0.0.0:60469           0.0.0.0:*                           743/rpcbind         
udp        0      0 0.0.0.0:111             0.0.0.0:*                           743/rpcbind         
udp6       0      0 :::52026                :::*                                743/rpcbind         
udp6       0      0 :::111                  :::*                                743/rpcbind         
udp6       0      0 fe80::f816:3eff:fe0:546 :::*                                829/NetworkManager  [root@ecs-91176055 ~]#  ss -ntupl
Netid               State                Recv-Q                Send-Q                                                 Local Address:Port                                Peer Address:Port               Process                                                 
udp                 UNCONN               0                     0                                                            0.0.0.0:60469                                    0.0.0.0:*                   users:(("rpcbind",pid=743,fd=7))                       
udp                 UNCONN               0                     0                                                            0.0.0.0:111                                      0.0.0.0:*                   users:(("rpcbind",pid=743,fd=6))                       
udp                 UNCONN               0                     0                                                               [::]:52026                                       [::]:*                   users:(("rpcbind",pid=743,fd=10))                      
udp                 UNCONN               0                     0                                                               [::]:111                                         [::]:*                   users:(("rpcbind",pid=743,fd=9))                       
udp                 UNCONN               0                     0                                    [fe80::f816:3eff:fe03:78e]%eth0:546                                         [::]:*                   users:(("NetworkManager",pid=829,fd=25))               
tcp                 LISTEN               0                     128                                                          0.0.0.0:22                                       0.0.0.0:*                   users:(("sshd",pid=1245,fd=3))                         
tcp                 LISTEN               0                     5                                                            0.0.0.0:44321                                    0.0.0.0:*                   users:(("pmcd",pid=1478,fd=0))                         
tcp                 LISTEN               0                     5                                                            0.0.0.0:4330                                     0.0.0.0:*                   users:(("pmlogger",pid=2752,fd=7))                     
tcp                 LISTEN               0                     4096                                                         0.0.0.0:111                                      0.0.0.0:*                   users:(("rpcbind",pid=743,fd=8))                       
tcp                 LISTEN               0                     128                                                             [::]:22                                          [::]:*                   users:(("sshd",pid=1245,fd=4))                         
tcp                 LISTEN               0                     5                                                               [::]:44321                                       [::]:*                   users:(("pmcd",pid=1478,fd=3))                         
tcp                 LISTEN               0                     5                                                               [::]:4330                                        [::]:*                   users:(("pmlogger",pid=2752,fd=8))                     
tcp                 LISTEN               0                     4096                                                            [::]:111                                         [::]:*                   users:(("rpcbind",pid=743,fd=11))        

最常遇到的问题是无法与远端端口建立连接,这是可以使用telnet命令进行连通性测试:

[root@ecs-91176055 ~]#  telnet 192.168.0.6 6443
Trying 192.168.0.6...
Connected to 192.168.0.6.
Escape character is '^]'.

如果要检查远程UDP端口,则可以使用netcat工具(nc命令)。

会话层

会话层负责协调两个设备之间的通信发起和终止过程,通信发起和终止的时间段及称为会话。

在这个层面,可以检查凭据、服务器证书、客户端的会话ID和cookies等内容。

表示层

表示层负责将数据转换为能够呈现给用户的形式。

在这个网站访问的例子中,SSLTLS加密方法是这一层的关键组成部分。在这一层,我们可以检查加密和解密方面的问题。

应用层

系统在此层接收用户的输入并将输出返回给用户。我们熟知的FTP、SMTP、SSH、IMAP、DNS、HTTP等协议均运行在这一层级。

在这个阶段,我们可以检查服务器上的配置文件是否存在错误。此外,还可以查看服务器日志文件以获取有关问题的更多详细信息。

结论

我们从底层开始逐层向上探索,针对OSI模型的每一层介绍了各种专用工具和排查思路。尽管实际生产环境会复杂得多,但这种方法论确是通用的。

这篇关于如何使用OSI七层模型的思路进行Linux网络问题排障?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911497

相关文章

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

QT进行CSV文件初始化与读写操作

《QT进行CSV文件初始化与读写操作》这篇文章主要为大家详细介绍了在QT环境中如何进行CSV文件的初始化、写入和读取操作,本文为大家整理了相关的操作的多种方法,希望对大家有所帮助... 目录前言一、CSV文件初始化二、CSV写入三、CSV读取四、QT 逐行读取csv文件五、Qt如何将数据保存成CSV文件前言

Qt中QUndoView控件的具体使用

《Qt中QUndoView控件的具体使用》QUndoView是Qt框架中用于可视化显示QUndoStack内容的控件,本文主要介绍了Qt中QUndoView控件的具体使用,具有一定的参考价值,感兴趣的... 目录引言一、QUndoView 的用途二、工作原理三、 如何与 QUnDOStack 配合使用四、自

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、