手把手教你使用Python实现常用的假设检验 !

2024-04-17 07:18

本文主要是介绍手把手教你使用Python实现常用的假设检验 !,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开门见山。

这篇文章,教大家用Python实现常用的假设检验!

服从什么分布,就用什么区间估计方式,也就就用什么检验!

比如:两个样本方差比服从F分布,区间估计就采用F分布计算临界值(从而得出置信区间),最终采用F检验。

建设检验的基本步骤:

前言

假设检验用到的Python工具包

  • Statsmodels是Python中,用于实现统计建模和计量经济学的工具包,主要包括描述统计、统计模型估计和统计推断

  • Scipy是一个数学、科学和工程计算Python工具包,主要包括统计,优化,整合,线性代数等等与科学计算有关的包

导入数据


from sklearn.datasets import load_irisimport numpy as np#导入IRIS数据集iris = load_iris()iris=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])print(iris)

一个总体均值的z检验

np.mean(iris['petal_legth'])'''原假设:鸢尾花花瓣平均长度是4.2备择假设:鸢尾花花瓣平均长度不是4.2
'''
import statsmodels.stats.weightstatsz, pval = statsmodels.stats.weightstats.ztest(iris['petal_legth'], value=4.2)print(z,pval)'''P=0.002 <5%, 拒绝原假设,接受备则假设。'''

一个总体均值的t检验


import scipy.statst, pval = scipy.stats.ttest_1samp(iris['petal_legth'], popmean=4.0)print(t, pval)
'''P=0.0959 > 5%, 接受原假设,即花瓣长度为4.0。 '''


模拟双样本t检验


#取两个样本iris_1 = iris[iris.petal_legth >= 2]iris_2 = iris[iris.petal_legth < 2]print(np.mean(iris_1['petal_legth']))print(np.mean(iris_2['petal_legth']))
'''H0: 两种鸢尾花花瓣长度一样H1: 两种鸢尾花花瓣长度不一样
'''
import scipy.statst, pval = scipy.stats.ttest_ind(iris_1['petal_legth'],iris_2['petal_legth'])print(t,pval)
'''p<0.05,拒绝H0,认为两种鸢尾花花瓣长度不一样'''

 练习

数据字段说明:

  • gender:性别,1为男性,2为女性

  • Temperature:体温

  • HeartRate:心率

  • 共130行,3列

  • 用到的数据链接:pan.baidu.com/s/1t4SKF6

本周需要解决的几个小问题:

1. 人体体温的总体均值是否为98.6华氏度?

2. 人体的温度是否服从正态分布?

3. 人体体温中存在的异常数据是哪些?

4. 男女体温是否存在明显差异?

5. 体温与心率间的相关性(强?弱?中等?)


1.1 探索数据


import numpy as npimport pandas as pdfrom scipy import statsdata = pd.read_csv("C:\\Users\\baihua\\Desktop\\test.csv")print(data.head())sample_size = data.size #130*3out:   Temperature  Gender  HeartRate0         96.3       1         701         96.7       1         712         96.9       1         743         97.0       1         804         97.1       1         73
print(data.describe())out: Temperature      Gender   HeartRatecount   130.000000  130.000000  130.000000mean     98.249231    1.500000   73.761538std       0.733183    0.501934    7.062077min      96.300000    1.000000   57.00000025%      97.800000    1.000000   69.00000050%      98.300000    1.500000   74.00000075%      98.700000    2.000000   79.000000max     100.800000    2.000000   89.000000
人体体温均值是98.249231

1.2 人体的温度是否服从正态分布?


'''人体的温度是否服从正态分布?先画出分布的直方图,然后使用scipy.stat.kstest函数进行判断。
'''%matplotlib inlineimport seaborn as snssns.distplot(data['Temperature'], color='b', bins=10, kde=True)


stats.kstest(data['Temperature'], 'norm')out:KstestResult(statistic=1.0, pvalue=0.0)'''p<0.05,不符合正态分布'''

判断是否服从t分布


'''判断是否服从t分布:
'''
np.random.seed(1)ks = stats.t.fit(data['Temperature'])df = ks[0]loc = ks[1]scale = ks[2]t_estm = stats.t.rvs(df=df, loc=loc, scale=scale, size=sample_size)stats.ks_2samp(data['Temperature'], t_estm)
'''pvalue=0.4321464176976891 <0.05,认为体温服从t分布'''

判断是否服从卡方分布


'''判断是否服从卡方分布:
'''np.random.seed(1)chi_square = stats.chi2.fit(data['Temperature'])df = chi_square[0]loc = chi_square[1]scale = chi_square[2]chi_estm = stats.chi2.rvs(df=df, loc=loc, scale=scale, size=sample_size)stats.ks_2samp(data['Temperature'], chi_estm)
'''pvalue=0.3956146564478842>0.05,认为体温服从卡方分布
'''

绘制卡方分布直方图


'''绘制卡方分布图
'''
from matplotlib import pyplot as pltplt.figure()data['Temperature'].plot(kind = 'kde')chi2_distribution = stats.chi2(chi_square[0], chi_square[1],chi_square[2])x = np.linspace(chi2_distribution.ppf(0.01), chi2_distribution.ppf(0.99), 100)plt.plot(x, chi2_distribution.pdf(x), c='orange')plt.xlabel('Human temperature')plt.title('temperature on chi_square', size=20)plt.legend(['test_data', 'chi_square'])


1.3 人体体温中存在的异常数据是哪些?


'''已知体温数据服从卡方分布的情况下,可以直接使用Python计算出P=0.025和P=0.925时(该函数使用单侧概率值)的分布值,在分布值两侧的数据属于小概率,认为是异常值。'''lower1=chi2_distribution.ppf(0.025)lower2=chi2_distribution.ppf(0.925)t=data['Temperature']print(t[t<lower1] )print(t[t>lower2])
out:
0     96.31     96.765    96.466    96.767    96.8Name: Temperature, dtype: float6463      99.464      99.5126     99.4127     99.9128    100.0129    100.8Name: Temperature, dtype: float64

1.4 男女体温差异是否显著


'''此题是一道两个总体均值之差的假设检验问题,因为是否存在差别并不涉及方向,所以是双侧检验。建立原假设和备择假设如下:H0:u1-u2 =0  没有显著差H1:u1-u2 != 0  有显著差别
'''data.groupby(['Gender']).size() #样本量65male_df = data.loc[data['Gender'] == 1]female_df = data.loc[data['Gender'] == 2]
'''使用Python自带的函数,P用的双侧累计概率'''import scipy.statst, pval = scipy.stats.ttest_ind(male_df['Temperature'],female_df['Temperature'])print(t,pval)if pval > 0.05:    print('不能拒绝原假设,男女体温无明显差异。')else:    print('拒绝原假设,男女体温存在明显差异。')
out:-2.2854345381654984 0.02393188312240236拒绝原假设,男女体温存在明显差异。

1.5 体温与心率间的相关性(强?弱?中等?)


'''
体温与心率间的相关性(强?弱?中等?)
'''
heartrate_s = data['HeartRate']temperature_s = data['Temperature']from matplotlib import pyplot as pltplt.scatter(heartrate_s, temperature_s)

stat, p = stats.pearsonr(heartrate_s, temperature_s)print('stat=%.3f, p=%.3f' % (stat, p))print(stats.pearsonr(heartrate_s, temperature_s))
'''相关系数为0.004,可以认为二者之间没有相关性
'''
End.
作者:求知鸟来源:知乎扫一扫下面的二维码领取Python学习资料~
“扫一扫,领取Python学习资料”

这篇关于手把手教你使用Python实现常用的假设检验 !的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911139

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr