手把手教你使用Python实现常用的假设检验 !

2024-04-17 07:18

本文主要是介绍手把手教你使用Python实现常用的假设检验 !,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开门见山。

这篇文章,教大家用Python实现常用的假设检验!

服从什么分布,就用什么区间估计方式,也就就用什么检验!

比如:两个样本方差比服从F分布,区间估计就采用F分布计算临界值(从而得出置信区间),最终采用F检验。

建设检验的基本步骤:

前言

假设检验用到的Python工具包

  • Statsmodels是Python中,用于实现统计建模和计量经济学的工具包,主要包括描述统计、统计模型估计和统计推断

  • Scipy是一个数学、科学和工程计算Python工具包,主要包括统计,优化,整合,线性代数等等与科学计算有关的包

导入数据


from sklearn.datasets import load_irisimport numpy as np#导入IRIS数据集iris = load_iris()iris=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])print(iris)

一个总体均值的z检验

np.mean(iris['petal_legth'])'''原假设:鸢尾花花瓣平均长度是4.2备择假设:鸢尾花花瓣平均长度不是4.2
'''
import statsmodels.stats.weightstatsz, pval = statsmodels.stats.weightstats.ztest(iris['petal_legth'], value=4.2)print(z,pval)'''P=0.002 <5%, 拒绝原假设,接受备则假设。'''

一个总体均值的t检验


import scipy.statst, pval = scipy.stats.ttest_1samp(iris['petal_legth'], popmean=4.0)print(t, pval)
'''P=0.0959 > 5%, 接受原假设,即花瓣长度为4.0。 '''


模拟双样本t检验


#取两个样本iris_1 = iris[iris.petal_legth >= 2]iris_2 = iris[iris.petal_legth < 2]print(np.mean(iris_1['petal_legth']))print(np.mean(iris_2['petal_legth']))
'''H0: 两种鸢尾花花瓣长度一样H1: 两种鸢尾花花瓣长度不一样
'''
import scipy.statst, pval = scipy.stats.ttest_ind(iris_1['petal_legth'],iris_2['petal_legth'])print(t,pval)
'''p<0.05,拒绝H0,认为两种鸢尾花花瓣长度不一样'''

 练习

数据字段说明:

  • gender:性别,1为男性,2为女性

  • Temperature:体温

  • HeartRate:心率

  • 共130行,3列

  • 用到的数据链接:pan.baidu.com/s/1t4SKF6

本周需要解决的几个小问题:

1. 人体体温的总体均值是否为98.6华氏度?

2. 人体的温度是否服从正态分布?

3. 人体体温中存在的异常数据是哪些?

4. 男女体温是否存在明显差异?

5. 体温与心率间的相关性(强?弱?中等?)


1.1 探索数据


import numpy as npimport pandas as pdfrom scipy import statsdata = pd.read_csv("C:\\Users\\baihua\\Desktop\\test.csv")print(data.head())sample_size = data.size #130*3out:   Temperature  Gender  HeartRate0         96.3       1         701         96.7       1         712         96.9       1         743         97.0       1         804         97.1       1         73
print(data.describe())out: Temperature      Gender   HeartRatecount   130.000000  130.000000  130.000000mean     98.249231    1.500000   73.761538std       0.733183    0.501934    7.062077min      96.300000    1.000000   57.00000025%      97.800000    1.000000   69.00000050%      98.300000    1.500000   74.00000075%      98.700000    2.000000   79.000000max     100.800000    2.000000   89.000000
人体体温均值是98.249231

1.2 人体的温度是否服从正态分布?


'''人体的温度是否服从正态分布?先画出分布的直方图,然后使用scipy.stat.kstest函数进行判断。
'''%matplotlib inlineimport seaborn as snssns.distplot(data['Temperature'], color='b', bins=10, kde=True)


stats.kstest(data['Temperature'], 'norm')out:KstestResult(statistic=1.0, pvalue=0.0)'''p<0.05,不符合正态分布'''

判断是否服从t分布


'''判断是否服从t分布:
'''
np.random.seed(1)ks = stats.t.fit(data['Temperature'])df = ks[0]loc = ks[1]scale = ks[2]t_estm = stats.t.rvs(df=df, loc=loc, scale=scale, size=sample_size)stats.ks_2samp(data['Temperature'], t_estm)
'''pvalue=0.4321464176976891 <0.05,认为体温服从t分布'''

判断是否服从卡方分布


'''判断是否服从卡方分布:
'''np.random.seed(1)chi_square = stats.chi2.fit(data['Temperature'])df = chi_square[0]loc = chi_square[1]scale = chi_square[2]chi_estm = stats.chi2.rvs(df=df, loc=loc, scale=scale, size=sample_size)stats.ks_2samp(data['Temperature'], chi_estm)
'''pvalue=0.3956146564478842>0.05,认为体温服从卡方分布
'''

绘制卡方分布直方图


'''绘制卡方分布图
'''
from matplotlib import pyplot as pltplt.figure()data['Temperature'].plot(kind = 'kde')chi2_distribution = stats.chi2(chi_square[0], chi_square[1],chi_square[2])x = np.linspace(chi2_distribution.ppf(0.01), chi2_distribution.ppf(0.99), 100)plt.plot(x, chi2_distribution.pdf(x), c='orange')plt.xlabel('Human temperature')plt.title('temperature on chi_square', size=20)plt.legend(['test_data', 'chi_square'])


1.3 人体体温中存在的异常数据是哪些?


'''已知体温数据服从卡方分布的情况下,可以直接使用Python计算出P=0.025和P=0.925时(该函数使用单侧概率值)的分布值,在分布值两侧的数据属于小概率,认为是异常值。'''lower1=chi2_distribution.ppf(0.025)lower2=chi2_distribution.ppf(0.925)t=data['Temperature']print(t[t<lower1] )print(t[t>lower2])
out:
0     96.31     96.765    96.466    96.767    96.8Name: Temperature, dtype: float6463      99.464      99.5126     99.4127     99.9128    100.0129    100.8Name: Temperature, dtype: float64

1.4 男女体温差异是否显著


'''此题是一道两个总体均值之差的假设检验问题,因为是否存在差别并不涉及方向,所以是双侧检验。建立原假设和备择假设如下:H0:u1-u2 =0  没有显著差H1:u1-u2 != 0  有显著差别
'''data.groupby(['Gender']).size() #样本量65male_df = data.loc[data['Gender'] == 1]female_df = data.loc[data['Gender'] == 2]
'''使用Python自带的函数,P用的双侧累计概率'''import scipy.statst, pval = scipy.stats.ttest_ind(male_df['Temperature'],female_df['Temperature'])print(t,pval)if pval > 0.05:    print('不能拒绝原假设,男女体温无明显差异。')else:    print('拒绝原假设,男女体温存在明显差异。')
out:-2.2854345381654984 0.02393188312240236拒绝原假设,男女体温存在明显差异。

1.5 体温与心率间的相关性(强?弱?中等?)


'''
体温与心率间的相关性(强?弱?中等?)
'''
heartrate_s = data['HeartRate']temperature_s = data['Temperature']from matplotlib import pyplot as pltplt.scatter(heartrate_s, temperature_s)

stat, p = stats.pearsonr(heartrate_s, temperature_s)print('stat=%.3f, p=%.3f' % (stat, p))print(stats.pearsonr(heartrate_s, temperature_s))
'''相关系数为0.004,可以认为二者之间没有相关性
'''
End.
作者:求知鸟来源:知乎扫一扫下面的二维码领取Python学习资料~
“扫一扫,领取Python学习资料”

这篇关于手把手教你使用Python实现常用的假设检验 !的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911139

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象