别再研究秒杀茅台了,这个项目用爬虫捡漏买奔驰!

2024-04-17 07:08

本文主要是介绍别再研究秒杀茅台了,这个项目用爬虫捡漏买奔驰!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近几年,“二手经济”逐渐火热,二手车市场也在快速扩大。

相同的车型,二手车比新车要实惠许多,比如下图中的奔驰GLC级,二手车能比新车便宜5-20万不等。因此有越来越多的人在购置车辆时将二手车纳入了考量。

但众所周知,二手市场的水也比较深,一不小心就容易缴“智商税”,所以在购买二手车前,对市场有一定的了解是必不可少的。

今天我给大家带来了一个某二手车网站的实战项目,用Python来分析二手车市场行情

一、明确需求

1、爬取某二手车网站奔驰GLC级轿车的信息(标题、购车年份、里程数、价格)

2、利用年限和行驶里程,分析二手车保价率信息

 

二、爬取数据

本例中我们将用selenium库来爬取数据。Selenium不同于其他的爬虫库,可以直接操纵浏览器,就像真正的用户在操作一样,安全性极高,不用担心被服务器屏蔽。

首先,利用xpath helper得到我们需要的内容的xpath表达式

xpath表达式中,我们只要更改其中“li[1]”中的数字,就能让程序将整页的数据都爬取下来,一页有40条数据,所以我们只要写一条1-40的循环即可。

分析出这些信息后,我们就可以着手写代码了。

车辆的购车年份、里程数、价格也可以通过同样的方式获取。

 

三、数据清洗

什么是数据清洗?数据清洗是一个对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。

 

比如在我们这个例子中,我们发现爬取下来的年份里有个“年”字,里程数后有“万公里”的字样,我们在进行数据分析的时候是不需要这些文本的,因此我们需要在数据清洗中将这些多余的汉字给“清洗”掉。

最后,我们将获取的数据以表格的形式输出,就得到了一份二手车数据的表格,可以开始我们的数据分析了!

 

怎么样,数据清洗是不是很简单?

 

四、数据可视化

得到了数据,我们就可以通过直观的方式对数据进行分析,从中发现数据的趋势、特征。

如图,左图的点阵图可以很明显地看到,购买年份越早的车,价格会聚集在更低的区间;而右图我们可以看到,里程数与价格呈负相关。

 

这样,我们就完成了一个数据分析的完整流程,数据爬取→数据清洗→数据分析→可视化输出→得出结论

我们学习Python,尤其是学习数据分析,离不开大量实战业务的训练,这里给大家提供一个免费的实战训练的途径:网易云课堂的《3天数据分析实战集训营》

如果你想自己动手做这个项目,或者尝试其他实战项目(电商直播和Python量化)都可以领取这3节免费直播课,可以帮助大家快速掌握数据思维,体验真实的数据分析项目。现在报名课程后添加小助手,还可以领取4G网易内部资料包。

免费领取资料和大厂直播课

大家按照以下步骤,获取我特意挑选出来的书籍、视频。

1、扫二维码免费报名课程(限时300个名额)

2、报名成功后添加小助手即可免费领取资料

(扫码了解课程详情)

网易直播课内容详情

2月2日 20:00&数据可视化入门:

1节课教你:用Tableau实现酷炫可视化报表

场景工具:了解可视化工具Tableau

流程处理:  爬取数据源并清洗数据

学习成果:建立指标,分析二手车交易数据

实战案例:用数据解读,二手车市场走势

2月3日 20:00&数据可视化进阶

用Python实现电商直播数据可视化

场景工具:大厂数据分析工作流程解析

流程处理:用Python分析Excel处理不了的数据

学习成果:Python可视化常用工具箱

实战案例:动态展示电商直播数据

2月4日 20:00&量化交易入门和进阶:

利用Python,快速选择优质股票

场景工具:利用pandas工具分解KDJ指标构成

流程处理: 交易数据爬取,业务场景分析建模和可视化

分析结果:用KDJ指标模型对比特币行情买卖点搜索&交易回溯

实战项目:掌握根据数据指数和分析工具寻找虚拟货币买卖原理

他们每周都会定期分享一些干货供大家学习参考,对学习很有帮助。

(深度学习DeepLearning.ai实验室认证)

(微软/甲骨文/Cloudera等公司颁发的数据分析证书)

4步学会数据可视化,办公效率提高三倍

(更多精彩内容 等你解锁)

免费领取资料和大厂直播课

大家按照以下步骤,获取我特意挑选出来的书籍、视频。

1、扫二维码免费报名课程(限时300个名额)

2、报名成功后添加小助手即可免费领取资料

(扫码了解课程详情)

如果遇到一些环境配置,还有一些错误异常等bug,资料就显得不太够用,这时就需要找到老师,给我们特别讲解。

或者是想快速学习数据可视化领域知识,不妨先找一找直播课看看,了解当下最贴合实际的学习思路,确定自己的方向

(记得添加小助手领资料喔,说不定你哪天就用上了)

这篇关于别再研究秒杀茅台了,这个项目用爬虫捡漏买奔驰!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911116

相关文章

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

javafx 如何将项目打包为 Windows 的可执行文件exe

《javafx如何将项目打包为Windows的可执行文件exe》文章介绍了三种将JavaFX项目打包为.exe文件的方法:方法1使用jpackage(适用于JDK14及以上版本),方法2使用La... 目录方法 1:使用 jpackage(适用于 JDK 14 及更高版本)方法 2:使用 Launch4j(

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择

Jenkins中自动化部署Spring Boot项目的全过程

《Jenkins中自动化部署SpringBoot项目的全过程》:本文主要介绍如何使用Jenkins从Git仓库拉取SpringBoot项目并进行自动化部署,通过配置Jenkins任务,实现项目的... 目录准备工作启动 Jenkins配置 Jenkins创建及配置任务源码管理构建触发器构建构建后操作构建任务

Nginx、Tomcat等项目部署问题以及解决流程

《Nginx、Tomcat等项目部署问题以及解决流程》本文总结了项目部署中常见的four类问题及其解决方法:Nginx未按预期显示结果、端口未开启、日志分析的重要性以及开发环境与生产环境运行结果不一致... 目录前言1. Nginx部署后未按预期显示结果1.1 查看Nginx的启动情况1.2 解决启动失败的

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了