【Python基础】—— scipy.spatial.KDTree、matplotlib.pyplot、imageio

2024-04-17 00:52

本文主要是介绍【Python基础】—— scipy.spatial.KDTree、matplotlib.pyplot、imageio,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

scipy.spatial参考博客:Python点云处理——建立KDtree

1 KDtree算法原理

KDtree构建出了一种类似于二叉树的树形数据存储结构,每一层都对应原始数据中相应的维度,以K层为一个循环,因此被称为KDtree。

每一层的左右子树的划分依据则是一个人为指定的超平面,该平面对应的坐标为根节点,小于的放在左子树,大于的放在右子树,一直不停的分割下去,将所有维度遍历一遍之后,再从第一个维度重新选择一个超平面开始分割,直至将左右子树分割到都只剩一个叶子节点为止。这样就将所有的数据都在KDtree上唯一确定了位置,以便进行最近邻搜索半径搜索等操作。

2 计算过程

给出一组三维点云数据(1,1,1),(2,2,2),(1,3,1),(3,4,2),(4,5,6):

  1. 首先,x坐标划分,以2为分界,(2,2,2)为根节点,小于2的在左子树:(1,1,1),(1,3,1),大于2的在右子树:(3,4,2),(4,5,6)
  2. 然后以y坐标划分,前一层的左子树以1为分界,(1,1,1)在根节点,(1,3,1)在右子树;前一层右子树以4为分界,(3,4,2)在根节点,(4,5,6)在右子树,这样就将所有点云数据唯一地存储在了KDtree中

3 代码实现

import numpy as np
from scipy.spatial import KDTreepoint= np.random.rand(1000,7)
tree = KDTree(point[:, 0:3])

先随机生成一个7维的点云数据(xyz坐标,xyz法向量,标签),然后调用Scipy中的scipy.spatial.KDTree库函数。与Open3D相比,该库函数可以生成任意维度的KDtree,而不是只能输入三维点云,在处理带有法向量和标签等其他维度的点云数据时具有天然的优势。

4 应用

生成KDtree后,最常见的应用就是对其进行各种搜索。

import numpy as np
from scipy.spatial import KDTreepoint= np.random.rand(1000,7)
tree = KDTree(point[:, 0:3])for i in range(0,len(point)):neighbors = tree.query_ball_point(point[i,0:3], 0.1,workers=-1,return_length=True)

这句代码调用了Scipy的KDtree模块中的“球查询”,即半径查找功能,可以查找点云中指定点在半径0.1内的所有近邻点,workers=-1代表启用多线程,poinr[i,0:3]代表只对前三列数据进行查找,若不指定return_lengeth参数,默认返回这些近邻点的索引。若指定其为True,则返回这些点的个数,从而便于进行滤波算法的构建。

最近邻:

一个是tree = spatial.KDTree(mesh.points)输入点云
一个是nearest = tree.query(pos[i],k=2) 寻找最近的两个点。因为第一个点必定是自己所以找俩。返回的是两个np array。第一个是所有的最小距离,第二个是所有的最近点index

matplotlib.pyplot参考博客:Python 数据分析(二):Matplotlib 绘图
只记录学习过程中常用的

1 简单使用

from matplotlib import pyplot as pltx = range(1, 7)
y = [13, 15, 14, 16, 15, 17]
plt.title('折线图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
plt.plot(x, y)
plt.show()

在这里插入图片描述
改变折线的样式、颜色等

from matplotlib import pyplot as pltx = range(1, 7)
y = [13, 15, 14, 16, 15, 17]
'''
figsize:设置图片的宽、高,单位为英寸
dpi:设置分辨率
'''
plt.figure(figsize=(8, 5), dpi=80)
plt.title('折线图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
'''
color:颜色
linewidth:线的宽度
marker:折点样式
linestyle:线的样式,主要包括:'-'、'--'、'-.'、':'
'''
plt.plot(x, y, color='red', marker='o', linewidth='1', linestyle='--')
# 保存
plt.savefig('test.png')
plt.show()

在这里插入图片描述

2 多线

from matplotlib import pyplot as pltx = range(15, 25)
y1 = [50, 55, 58, 65, 70, 68, 70, 72, 75, 70]
y2 = [52, 53, 60, 63, 65, 68, 75, 80, 85, 72]
plt.figure(figsize=(10, 6), dpi=80)
plt.title('体重年龄折线图')
plt.xlabel('年龄(岁)')
plt.ylabel('体重(kg)')
plt.plot(x, y1, color='red', label='张三')
plt.plot(x, y2, color='blue', label='李四')
# 添加网格,alpha 为透明度
plt.grid(alpha=0.5)
# 添加图例
plt.legend(loc='upper right')
plt.show()

在这里插入图片描述

3 子图

from matplotlib import pyplot as plt
import numpy as npa = np.arange(1, 30)
# 划分子图
fig, axs = plt.subplots(2, 2)
# 绘制子图
axs1 = axs[0, 0]
axs2 = axs[0, 1]
axs3 = axs[1, 0]
axs4 = axs[1, 1]
axs1.plot(a, a)
axs2.plot(a, np.sin(a))
axs3.plot(a, np.log(a))
axs4.plot(a, a ** 2)
plt.show()

在这里插入图片描述
imageio库参考博客:
【python】利用imageio库制作动态图
Python快速生成gif图
将多张图片合成GIF,需要的 python 库为 imageio,使用 imageio 可方便的使多张图片生成 gif 图。首先我们需要一个列表存储图片路径,此处为了方便演示,直接使用列表作为存储,并且创建一个变量为图片的保存路径:

import os
import imageioframes = []
for image_name in os.listdir("./image"): # 读取image下的图片名称image_name = "D:\随笔\测试\image\\" + image_name # 绝对路径frames.append(imageio.imread(image_name))imageio.mimsave("./res.gif", frames, 'GIF', duration=0.1) # 保存在当前文件夹
# 参数:duration=0.1,间隔时间

合成gif图

import imageio
def compose_gif():img_paths = ["img/1.jpg","img/2.jpg","img/3.jpg","img/4.jpg","img/5.jpg","img/6.jpg"]gif_images = []for path in img_paths:gif_images.append(imageio.imread(path))imageio.mimsave("test.gif",gif_images,fps=1)

通过fps参数可以控制合成gif图片播放图片的速度和视频的播放帧率是一样的,fps参数越大播放的速率越大,fps越小播放的速度越慢

这篇关于【Python基础】—— scipy.spatial.KDTree、matplotlib.pyplot、imageio的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910373

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及