STM32标准库+HAL库 | CPU片内FLASH存储器数据掉电读写

2024-04-16 22:36

本文主要是介绍STM32标准库+HAL库 | CPU片内FLASH存储器数据掉电读写,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、片内FLASH

        在STM32芯片内部有一个FLASH存储器,它主要用于存储代码,我们在电脑上编写好应用程序后,使用下载器把编译后的代码文件烧录到该内部FLASH中, 由于FLASH存储器的内容在掉电后不会丢失,芯片重新上电复位后,内核可从内部FLASH中加载代码并运行。

        从下图所示的官方数据手册可知,STM32的Flash地址起始0x0800 0000结束地址是0x0800 0000加上芯片实际的Flash大小,不同的芯片Flash大小不同,FLASH一般用来存储代码和一些定义为const的数据断电不丢失。RAM起始地址是0x2000 0000,结束地址是0x2000 0000加上芯片的RAM大小,不同的芯片RAM也不同,是MCU的内存,用来存储代码运行时的数据,变量等等,掉电数据丢失。

        对FLASH进行操作时,有必要提前知道FLASH的内存大小,方便后面芯片选型和开发过程中对FLASH数据读写,掉电保存等操作。如下图可知,STM32内部FLASH的容量类型可根据它的型号名确定,本次HAL库使用的STM32G431RBT6芯片,其FLASH空间大小为128KB;标准库使用的是STM32F407VET6芯片,其FLASH空间大小为512KB。

        如下图所示,是从某元器件商城查询到的常用AT24C02及W25Q16系列存储器的价格,如果只是做单个原型设备,那么一个小存储器芯片的价格可能是不痛不痒的但对能进行大批量生产的电子产品,成本压缩几毛钱,都能创造一笔不菲的收入,甚至节约下来的成本可以供很多工程师的月工资。因此对于数据存储量不是很大的设备产品,就可以考虑直接使用MCU内置的FLASH进行数据掉电存储读写。

         因此如果MCU内部FLASH存储了应用程序后还有剩余的空间,我们可以把它像外部SPI-FLASH那样利用起来,存储一些程序运行时产生的需要掉电保存的数据。由于访问内部FLASH的速度要比外部的SPI-FLASH快得多,所以在紧急状态下常常会使用内部FLASH存储关键记录;为了防止应用程序被抄袭, 有的应用会禁止读写内部FLASH中的内容,或者在第一次运行时计算加密信息并记录到某些区域,然后删除自身的部分加密代码,这些应用都涉及到内部FLASH的操作。

二、FLASH读写编程思路

1、写Flash思路

0、确定写数据地址

1、FLASH解锁

2、擦除待写区域数据

3、写入数据

4、FLASH上锁

写Flash时会用到的HAL库API接口:

//对 FLASH 进行写操作前必须先解锁,解锁操作也就是必须在 FLASH_KEYR 寄存器写入特定的序列;有解锁当然就有上锁,为了保护Flash,读写和擦除全部完需要的Flash空间后,需要上锁操作。
//FLASH解锁
HAL_StatusTypeDef HAL_FLASH_Unlock(void);//擦除数据
void FLASH_PageErase(uint32_t Page, uint32_t Banks);
void FLASH_MassErase(uint32_t Banks);//写数据
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data);
void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data);
void FLASH_Program_Fast(uint32_t Address, uint32_t DataAddress);//FLASH上锁
HAL_StatusTypeDef HAL_FLASH_Lock(void);

写FLASH时的标准库API接口:

//FLASH解锁
void FLASH_Unlock(void);//擦除数据
FLASH_Status FLASH_EraseSector(uint32_t FLASH_Sector, uint8_t VoltageRange);
FLASH_Status FLASH_EraseAllSectors(uint8_t VoltageRange);
FLASH_Status FLASH_EraseAllBank1Sectors(uint8_t VoltageRange);
FLASH_Status FLASH_EraseAllBank2Sectors(uint8_t VoltageRange);//写数据
FLASH_Status FLASH_ProgramDoubleWord(uint32_t Address, uint64_t Data);
FLASH_Status FLASH_ProgramWord(uint32_t Address, uint32_t Data);
FLASH_Status FLASH_ProgramHalfWord(uint32_t Address, uint16_t Data);
FLASH_Status FLASH_ProgramByte(uint32_t Address, uint8_t Data);//FLASH上锁
void FLASH_Lock(void);

提醒:同一个库的不同版本,API的命名也能会有变动。不同芯片其库内的函数封装也可能存在差异。

2、读Flash数据

1、确定读数据地址

2、指针偏移间接读取

3、读取数据成功

三、HAL库FLASH读写

①、flash.c

#include "flash.h"//STM32G431RBT6的FLASH为128KB,因此FLASH地址起始地址:0x0800 0000,结束地址是:0x0802 0000/*** @brief  HAL库版写一个uint64_t类型的数据* @param  addr: 存储数据的地址* @param  data: 写入的数据* @retval 成功返回0, 失败返回-1*/
int Flash_HAL_Write_Data(uint32_t addr, uint64_t data)
{//1、FLASH解锁HAL_FLASH_Unlock();__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR);//2、FLASH擦除FLASH_EraseInitTypeDef EraseInitStruct;EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;    //页擦除EraseInitStruct.Banks = FLASH_BANK_1;EraseInitStruct.Page = 15-1;    //从第几个页开始擦除(0开始)EraseInitStruct.NbPages = 5;    //擦除多少个页uint32_t PageError = 0;            //记录擦除出错时的起始地址if(HAL_FLASHEx_Erase(&EraseInitStruct, &PageError)!=HAL_OK){printf("FLASH擦除出错,开始出错地址:%#x\r\n", PageError);return -1;}//3、FLASH写入if(HAL_FLASH_Program(TYPEPROGRAM_DOUBLEWORD, addr, data)!=HAL_OK){printf("FLASH写入失败\r\n");return -1;}//4、FLASH上锁HAL_FLASH_Lock();return 0;
}/*** @brief  HAL库版写N个uint64_t类型的数据* @param  addr: 存储数据的地址* @param  data: 数据数组* @param  num: 数据的个数* @retval 成功返回0, 失败返回-1*/
int Flash_HAL_Write_N_Data(uint32_t addr, uint64_t *data, uint16_t num)
{//1、FLASH解锁HAL_FLASH_Unlock();__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR);//2、FLASH擦除FLASH_EraseInitTypeDef EraseInitStruct;EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;    //页擦除EraseInitStruct.Banks = FLASH_BANK_1;EraseInitStruct.Page = 15-1;    //从第几个页开始擦除(0开始)EraseInitStruct.NbPages = 5;    //擦除多少个页uint32_t PageError = 0;            //记录擦除出错时的起始地址if(HAL_FLASHEx_Erase(&EraseInitStruct, &PageError)!=HAL_OK){printf("FLASH擦除出错,开始出错地址:%#x\r\n", PageError);return -1;}//3、FLASH写入for(uint16_t i=0; i<num; i++){if(HAL_FLASH_Program(TYPEPROGRAM_DOUBLEWORD, addr, data[i])!=HAL_OK){printf("FLASH写入失败\r\n");return -1;}addr += sizeof(uint64_t);}//4、FLASH上锁HAL_FLASH_Lock();    return 0;
}/*** @brief  HAL库版读取N个uint64_t类型的数据* @param  addr: 读取数据的地址(用户空间的地址)* @param  data: 数据数组* @param  num: 数据的个数* @retval NONE*/
void Flash_HAL_Read_N_Data(uint32_t addr, uint64_t *data, uint32_t num)
{for(uint32_t i=0; i<num; i++){data[i] = *(volatile uint64_t*)addr;addr += sizeof(uint64_t);//根据读取的数据类型进行内存地址递增}
}/*** @brief  HAL库版读取N个uint8_t类型的数据* @param  addr: 读取数据的地址* @param  data: 数据数组* @param  num: 数据的个数* @retval NONE*/
void Flash_HAL_Read_N_Byte(uint32_t addr, uint8_t *data, uint32_t num)
{for(uint32_t i=0; i<num; i++){data[i] = *(volatile uint8_t*)addr;addr += sizeof(uint8_t);//根据读取的数据类型进行内存地址递增}
}

②、flash.h

#ifndef __FLASH_H
#define __FLASH_H#include "stm32g4xx_hal.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
//STM32G431RBT6的FLASH大小为128KB,只有63个页
#define ADDR_FLASH_PAGE_0     ((uint32_t)0x08000000) /* Base @ of Page 0, 2 Kbytes */
#define ADDR_FLASH_PAGE_1     ((uint32_t)0x08000800) /* Base @ of Page 1, 2 Kbytes */
#define ADDR_FLASH_PAGE_2     ((uint32_t)0x08001000) /* Base @ of Page 2, 2 Kbytes */
#define ADDR_FLASH_PAGE_3     ((uint32_t)0x08001800) /* Base @ of Page 3, 2 Kbytes */
#define ADDR_FLASH_PAGE_4     ((uint32_t)0x08002000) /* Base @ of Page 4, 2 Kbytes */
#define ADDR_FLASH_PAGE_5     ((uint32_t)0x08002800) /* Base @ of Page 5, 2 Kbytes */
#define ADDR_FLASH_PAGE_6     ((uint32_t)0x08003000) /* Base @ of Page 6, 2 Kbytes */
#define ADDR_FLASH_PAGE_7     ((uint32_t)0x08003800) /* Base @ of Page 7, 2 Kbytes */
#define ADDR_FLASH_PAGE_8     ((uint32_t)0x08004000) /* Base @ of Page 8, 2 Kbytes */
#define ADDR_FLASH_PAGE_9     ((uint32_t)0x08004800) /* Base @ of Page 9, 2 Kbytes */
#define ADDR_FLASH_PAGE_10    ((uint32_t)0x08005000) /* Base @ of Page 10, 2 Kbytes */
#define ADDR_FLASH_PAGE_11    ((uint32_t)0x08005800) /* Base @ of Page 11, 2 Kbytes */
#define ADDR_FLASH_PAGE_12    ((uint32_t)0x08006000) /* Base @ of Page 12, 2 Kbytes */
#define ADDR_FLASH_PAGE_13    ((uint32_t)0x08006800) /* Base @ of Page 13, 2 Kbytes */
#define ADDR_FLASH_PAGE_14    ((uint32_t)0x08007000) /* Base @ of Page 14, 2 Kbytes */
#define ADDR_FLASH_PAGE_15    ((uint32_t)0x08007800) /* Base @ of Page 15, 2 Kbytes */
#define ADDR_FLASH_PAGE_16    ((uint32_t)0x08008000) /* Base @ of Page 16, 2 Kbytes */
#define ADDR_FLASH_PAGE_17    ((uint32_t)0x08008800) /* Base @ of Page 17, 2 Kbytes */
#define ADDR_FLASH_PAGE_18    ((uint32_t)0x08009000) /* Base @ of Page 18, 2 Kbytes */
#define ADDR_FLASH_PAGE_19    ((uint32_t)0x08009800) /* Base @ of Page 19, 2 Kbytes */
#define ADDR_FLASH_PAGE_20    ((uint32_t)0x0800A000) /* Base @ of Page 20, 2 Kbytes */
#define ADDR_FLASH_PAGE_21    ((uint32_t)0x0800A800) /* Base @ of Page 21, 2 Kbytes */
#define ADDR_FLASH_PAGE_22    ((uint32_t)0x0800B000) /* Base @ of Page 22, 2 Kbytes */
#define ADDR_FLASH_PAGE_23    ((uint32_t)0x0800B800) /* Base @ of Page 23, 2 Kbytes */
#define ADDR_FLASH_PAGE_24    ((uint32_t)0x0800C000) /* Base @ of Page 24, 2 Kbytes */
#define ADDR_FLASH_PAGE_25    ((uint32_t)0x0800C800) /* Base @ of Page 25, 2 Kbytes */
#define ADDR_FLASH_PAGE_26    ((uint32_t)0x0800D000) /* Base @ of Page 26, 2 Kbytes */
#define ADDR_FLASH_PAGE_27    ((uint32_t)0x0800D800) /* Base @ of Page 27, 2 Kbytes */
#define ADDR_FLASH_PAGE_28    ((uint32_t)0x0800E000) /* Base @ of Page 28, 2 Kbytes */
#define ADDR_FLASH_PAGE_29    ((uint32_t)0x0800E800) /* Base @ of Page 29, 2 Kbytes */
#define ADDR_FLASH_PAGE_30    ((uint32_t)0x0800F000) /* Base @ of Page 30, 2 Kbytes */
#define ADDR_FLASH_PAGE_31    ((uint32_t)0x0800F800) /* Base @ of Page 31, 2 Kbytes */
#define ADDR_FLASH_PAGE_32    ((uint32_t)0x08010000) /* Base @ of Page 32, 2 Kbytes */
#define ADDR_FLASH_PAGE_33    ((uint32_t)0x08010800) /* Base @ of Page 33, 2 Kbytes */
#define ADDR_FLASH_PAGE_34    ((uint32_t)0x08011000) /* Base @ of Page 34, 2 Kbytes */
#define ADDR_FLASH_PAGE_35    ((uint32_t)0x08011800) /* Base @ of Page 35, 2 Kbytes */
#define ADDR_FLASH_PAGE_36    ((uint32_t)0x08012000) /* Base @ of Page 36, 2 Kbytes */
#define ADDR_FLASH_PAGE_37    ((uint32_t)0x08012800) /* Base @ of Page 37, 2 Kbytes */
#define ADDR_FLASH_PAGE_38    ((uint32_t)0x08013000) /* Base @ of Page 38, 2 Kbytes */
#define ADDR_FLASH_PAGE_39    ((uint32_t)0x08013800) /* Base @ of Page 39, 2 Kbytes */
#define ADDR_FLASH_PAGE_40    ((uint32_t)0x08014000) /* Base @ of Page 40, 2 Kbytes */
#define ADDR_FLASH_PAGE_41    ((uint32_t)0x08014800) /* Base @ of Page 41, 2 Kbytes */
#define ADDR_FLASH_PAGE_42    ((uint32_t)0x08015000) /* Base @ of Page 42, 2 Kbytes */
#define ADDR_FLASH_PAGE_43    ((uint32_t)0x08015800) /* Base @ of Page 43, 2 Kbytes */
#define ADDR_FLASH_PAGE_44    ((uint32_t)0x08016000) /* Base @ of Page 44, 2 Kbytes */
#define ADDR_FLASH_PAGE_45    ((uint32_t)0x08016800) /* Base @ of Page 45, 2 Kbytes */
#define ADDR_FLASH_PAGE_46    ((uint32_t)0x08017000) /* Base @ of Page 46, 2 Kbytes */
#define ADDR_FLASH_PAGE_47    ((uint32_t)0x08017800) /* Base @ of Page 47, 2 Kbytes */
#define ADDR_FLASH_PAGE_48    ((uint32_t)0x08018000) /* Base @ of Page 48, 2 Kbytes */
#define ADDR_FLASH_PAGE_49    ((uint32_t)0x08018800) /* Base @ of Page 49, 2 Kbytes */
#define ADDR_FLASH_PAGE_50    ((uint32_t)0x08019000) /* Base @ of Page 50, 2 Kbytes */
#define ADDR_FLASH_PAGE_51    ((uint32_t)0x08019800) /* Base @ of Page 51, 2 Kbytes */
#define ADDR_FLASH_PAGE_52    ((uint32_t)0x0801A000) /* Base @ of Page 52, 2 Kbytes */
#define ADDR_FLASH_PAGE_53    ((uint32_t)0x0801A800) /* Base @ of Page 53, 2 Kbytes */
#define ADDR_FLASH_PAGE_54    ((uint32_t)0x0801B000) /* Base @ of Page 54, 2 Kbytes */
#define ADDR_FLASH_PAGE_55    ((uint32_t)0x0801B800) /* Base @ of Page 55, 2 Kbytes */
#define ADDR_FLASH_PAGE_56    ((uint32_t)0x0801C000) /* Base @ of Page 56, 2 Kbytes */
#define ADDR_FLASH_PAGE_57    ((uint32_t)0x0801C800) /* Base @ of Page 57, 2 Kbytes */
#define ADDR_FLASH_PAGE_58    ((uint32_t)0x0801D000) /* Base @ of Page 58, 2 Kbytes */
#define ADDR_FLASH_PAGE_59    ((uint32_t)0x0801D800) /* Base @ of Page 59, 2 Kbytes */
#define ADDR_FLASH_PAGE_60    ((uint32_t)0x0801E000) /* Base @ of Page 60, 2 Kbytes */
#define ADDR_FLASH_PAGE_61    ((uint32_t)0x0801E800) /* Base @ of Page 61, 2 Kbytes */
#define ADDR_FLASH_PAGE_62    ((uint32_t)0x0801F000) /* Base @ of Page 62, 2 Kbytes */
#define ADDR_FLASH_PAGE_63    ((uint32_t)0x0801F800) /* Base @ of Page 63, 2 Kbytes */#define FLASH_USER_START_ADDR   ADDR_FLASH_PAGE_15   /* Start @ of user Flash area */
#define FLASH_USER_END_ADDR     ADDR_FLASH_PAGE_18   /* End @ of user Flash area */int Flash_HAL_Write_Data(uint32_t addr, uint64_t data);
int Flash_HAL_Write_N_Data(uint32_t addr, uint64_t *data, uint16_t num);
void Flash_HAL_Read_N_Data(uint32_t addr, uint64_t *data, uint32_t num);
void Flash_HAL_Read_N_Byte(uint32_t addr, uint8_t *data, uint32_t num);#endif

③、字符串读写测试

④、整形数读写测试

四、标志库FLASH读写

①、flash.c

#include "flash.h"/*** @brief  清除用户FLASH扇区的数据* @param  NONE* @retval NONE*/
int Flash_Clean_User_Area_Data(uint32_t addr)
{//1、FLASH解锁FLASH_Unlock();//2、FLASH数据擦除if(FLASH_EraseSector(Flash_Addr_Get_Sector(addr), VoltageRange_3) != FLASH_COMPLETE){printf("FLASH擦除出错\r\n");//4、FLASH上锁FLASH_Lock();return -1;}//4、FLASH上锁FLASH_Lock();return 0;
}/*** @brief  写N个字节(uint8_t)的数据* @param  addr: 存储数据的地址* @param  data: 数据数组* @param  num: 数据的个数* @retval 成功返回0,失败返回-1*/
int Flash_Write_N_Byte(uint32_t addr, uint8_t *data, uint16_t num)
{//1、FLASH解锁FLASH_Unlock();//2、擦除数据//数据擦除操作会将一整个扇区擦除,如果需要连续写,最初用一次就行了//3、FLASH写入for(uint16_t i=0; i<num; i++){if(FLASH_ProgramByte(addr, data[i]) != FLASH_COMPLETE){printf("写多字节Byte数据失败\r\n");FLASH_Lock();return -1;}addr += sizeof(uint8_t);}//4、FLASH上锁FLASH_Lock();return 0;
}/*** @brief  写N个半字(uint16_t)的数据* @param  addr: 存储数据的地址* @param  data: 数据数组* @param  num: 数据的个数* @retval 成功返回0,失败返回-1*/
int Flash_Write_N_HalfWord(uint32_t addr, uint16_t *data, uint16_t num)
{//1、FLASH解锁FLASH_Unlock();//2、擦除数据//数据擦除操作会将一整个扇区擦除,如果需要连续写,最初用一次就行了//3、FLASH写入for(uint16_t i=0; i<num; i++){if(FLASH_ProgramHalfWord(addr, data[i]) != FLASH_COMPLETE){printf("写多个半字HalfWord数据失败\r\n");FLASH_Lock();return -1;}addr += sizeof(uint16_t);}//4、FLASH上锁FLASH_Lock();return 0;
}/*** @brief  写N个字(uint32_t)的数据* @param  addr: 存储数据的地址* @param  data: 数据数组* @param  num: 数据的个数* @retval 成功返回0,失败返回-1*/
int Flash_Write_N_Word(uint32_t addr, uint32_t *data, uint16_t num)
{//1、FLASH解锁FLASH_Unlock();//2、擦除数据//数据擦除操作会将一整个扇区擦除,如果需要连续写,最初用一次就行了//3、FLASH写入for(uint16_t i=0; i<num; i++){if(FLASH_ProgramWord(addr, data[i]) != FLASH_COMPLETE){printf("写多个字Word数据失败\r\n");FLASH_Lock();return -1;}addr += sizeof(uint32_t);}//4、FLASH上锁FLASH_Lock();return 0;
}/*** @brief  读N个字节(uint8_t)的数据* @param  addr: 数据的存储地址* @param  data: 数据数组* @param  num: 需要读取的数据个数* @retval 成功返回0,失败返回-1*/
void Flash_Read_N_Byte(uint32_t addr, uint8_t *data, uint16_t num)
{for(uint16_t i=0; i<num; i++){data[i] = *(volatile uint8_t*)addr;addr += sizeof(uint8_t);//根据读取的数据类型进行内存地址递增}
}/*** @brief  读N个半字(uint16_t)的数据* @param  addr: 数据的存储地址* @param  data: 数据数组* @param  num: 需要读取的数据个数* @retval 成功返回0,失败返回-1*/
void Flash_Read_N_HalfWord(uint32_t addr, uint16_t *data, uint16_t num)
{for(uint16_t i=0; i<num; i++){data[i] = *(volatile uint16_t*)addr;addr += sizeof(uint16_t);//根据读取的数据类型进行内存地址递增}
}/*** @brief  读N个字(uint32_t)的数据* @param  addr: 数据的存储地址* @param  data: 数据数组* @param  num: 需要读取的数据个数* @retval 成功返回0,失败返回-1*/
void Flash_Read_N_Word(uint32_t addr, uint32_t *data, uint16_t num)
{for(uint16_t i=0; i<num; i++){data[i] = *(volatile uint32_t*)addr;addr += sizeof(uint32_t);//根据读取的数据类型进行内存地址递增}
}/*** @brief  计算FLASH地址所在的扇区* @param  addr:FLASH地址* @retval 返回所在扇区数*/
uint32_t Flash_Addr_Get_Sector(uint32_t addr)
{uint32_t sector = 0;if((addr < ADDR_FLASH_SECTOR_1) && (addr >= ADDR_FLASH_SECTOR_0)){sector = FLASH_Sector_0;  }else if((addr < ADDR_FLASH_SECTOR_2) && (addr >= ADDR_FLASH_SECTOR_1)){sector = FLASH_Sector_1;  }else if((addr < ADDR_FLASH_SECTOR_3) && (addr >= ADDR_FLASH_SECTOR_2)){sector = FLASH_Sector_2;  }else if((addr < ADDR_FLASH_SECTOR_4) && (addr >= ADDR_FLASH_SECTOR_3)){sector = FLASH_Sector_3;  }else if((addr < ADDR_FLASH_SECTOR_5) && (addr >= ADDR_FLASH_SECTOR_4)){sector = FLASH_Sector_4;  }else if((addr < ADDR_FLASH_SECTOR_6) && (addr >= ADDR_FLASH_SECTOR_5)){sector = FLASH_Sector_5;  }else if((addr < ADDR_FLASH_SECTOR_7) && (addr >= ADDR_FLASH_SECTOR_6)){sector = FLASH_Sector_6;  }else if((addr < ADDR_FLASH_SECTOR_8) && (addr >= ADDR_FLASH_SECTOR_7)){sector = FLASH_Sector_7;  }
}

②、flash.h

#ifndef __FLASH_H
#define __FLASH_H#include "stm32f4xx.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>//STM32F407VET6的FLASH内存空间大小为512KB,起始地址:0x0800 0000,结束地址:0x0807 FFFF/* Base address of the Flash sectors */ 
#define ADDR_FLASH_SECTOR_0     ((uint32_t)0x08000000) /* Base address of Sector 0, 16 Kbytes   */
#define ADDR_FLASH_SECTOR_1     ((uint32_t)0x08004000) /* Base address of Sector 1, 16 Kbytes   */
#define ADDR_FLASH_SECTOR_2     ((uint32_t)0x08008000) /* Base address of Sector 2, 16 Kbytes   */
#define ADDR_FLASH_SECTOR_3     ((uint32_t)0x0800C000) /* Base address of Sector 3, 16 Kbytes   */
#define ADDR_FLASH_SECTOR_4     ((uint32_t)0x08010000) /* Base address of Sector 4, 64 Kbytes   */
#define ADDR_FLASH_SECTOR_5     ((uint32_t)0x08020000) /* Base address of Sector 5, 128 Kbytes  */
#define ADDR_FLASH_SECTOR_6     ((uint32_t)0x08040000) /* Base address of Sector 6, 128 Kbytes  */
#define ADDR_FLASH_SECTOR_7     ((uint32_t)0x08060000) /* Base address of Sector 7, 128 Kbytes  */
#define ADDR_FLASH_SECTOR_8     ((uint32_t)0x08080000) /* Base address of Sector 8, 128 Kbytes  *///用户自由使用的FLASH起始地址,需要根据实际代码占用的内存空间进行变动
#define FLASH_USER_START_ADDR   ADDR_FLASH_SECTOR_5   /* Start address of user Flash area */
#define FLASH_USER_END_ADDR     ADDR_FLASH_SECTOR_6  /* End address of user Flash area */int Flash_Clean_User_Area_Data(uint32_t addr);
int Flash_Write_N_Byte(uint32_t addr, uint8_t *data, uint16_t num);
int Flash_Write_N_HalfWord(uint32_t addr, uint16_t *data, uint16_t num);
int Flash_Write_N_Word(uint32_t addr, uint32_t *data, uint16_t num);void Flash_Read_N_Byte(uint32_t addr, uint8_t *data, uint16_t num);
void Flash_Read_N_HalfWord(uint32_t addr, uint16_t *data, uint16_t num);
void Flash_Read_N_Word(uint32_t addr, uint32_t *data, uint16_t num);uint32_t Flash_Addr_Get_Sector(uint32_t addr);#endif

③、字符串读写测试

④、整形数读写测试

这篇关于STM32标准库+HAL库 | CPU片内FLASH存储器数据掉电读写的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910087

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

10. 文件的读写

10.1 文本文件 操作文件三大类: ofstream:写操作ifstream:读操作fstream:读写操作 打开方式解释ios::in为了读文件而打开文件ios::out为了写文件而打开文件,如果当前文件存在则清空当前文件在写入ios::app追加方式写文件ios::trunc如果文件存在先删除,在创建ios::ate打开文件之后令读写位置移至文件尾端ios::binary二进制方式

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav