STM32的GPIO端口的八种模式解析

2024-04-16 14:12

本文主要是介绍STM32的GPIO端口的八种模式解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

STM32的GPIO端口的八种模式解析

一、上拉输入模式

二、下拉输入模式

三、浮空输入模式

四、模拟输入模式

五、推挽输出模式

六、开漏输出模式

七、复用推挽输出模式

八、复用开漏输出模式


STM32的GPIO端口的八种模式解析

在学习STM32的过程中,GPIO端口是最为基础的外设接口。GPIO(general purpose input output),即通用输入输出端口。STM32芯片通过GPIO端口来与外部的各种设备进行通讯、实现控制或者采集来自外部设备输出的信号。
GPIO按照输入或者输出模式不同可以划分为以下八种模式:
输入模式四种:上拉输入模式下拉输入模式浮空输入模式模拟输入模式
输出模式四种:推挽输出模式开漏输出模式复用推挽输出模式复用开漏输出模式
这里以stm32f103系列芯片为例,依次介绍上面的每一种模式。下面的图是stm32f103中文参考手册里的GPIO端口的基本结构图。

一、上拉输入模式

1、如上图所示,GPIO工作在上拉输入模式时,上拉开关闭合,下拉开关断开,肖特基触发器打开。
2、此时,当IO引脚没有外部输入时,GPIO引脚默认会输入一个高电平。可以通过读取输入数据寄存器来读取到此时的IO电平。
3、需要注意的是,为了避免芯片内部的上下拉对外部输入的电平信号有太大的影响,在芯片内部的这两个上拉或者下拉都呈现一种弱上拉和弱下拉。这是由于内部的两个上下拉的电阻的阻值比较大(一般为几十千欧)。

二、下拉输入模式

1、如上图所示,GPIO工作在下拉输入模式时,上拉开关断开,下拉开关闭合,肖特基触发器打开。
2、此时,当IO引脚没有外部输入时,GPIO引脚默认会输入一个低电平。可以通过读取输入数据寄存器来读取到此时的IO电平。
3、需要注意的是,为了避免芯片内部的上下拉对外部输入的电平信号有太大的影响,在芯片内部的这两个上拉或者下拉都是一种弱上拉和弱下拉。这是由于内部的两个上下拉的电阻的阻值比较大(一般为几十千欧)。

三、浮空输入模式

1、如上图所示,GPIO工作在浮空输入模式时,上拉开关和下拉开关均断开,肖特基触发器打开。
2、此时,如果外部的IO引脚什么都不接(即悬空状态),可以知道GPIO引脚的电平将是一个不确定的状态。它将完全由外部的输入电平来确定。

四、模拟输入模式

1、对于模拟输入模式来说,肖特基触发器关闭,数据不在经过触发器模块。并且内部上下拉全部断开。
2、该模式一般是给芯片内部的ADC外设来使用的,用于采集来自芯片外部的模拟信号。如上图所示,来自外部的模拟信号直接进入片上ADC外设进行处理。
3、在模拟输入模式下可以知道MCU将无法通过读取输入数据寄存器获得IO引脚的电平变化状态。

五、推挽输出模式

1、如上图所示,GPIO在推挽输出模式下,方框中的输出控制模块相当于一个反相器。
2、在推挽输出模式下,输出驱动器中的P-MOS和N-MOS晶体管每次只有一个能正常工作。在介绍输出模式前我们先简单介绍下场效应管的结构及工作原理。

1、上图所示为输出驱动器中的P-MOS和N-MOS场效应晶体管的结构图,对于场效应晶体管来说,和普通三极管类似有栅极G,源极S和漏极D三个电极,它们分别对应三极管的基级B、发射极E和集电极C。N-MOS类似于NPN的三极管,P-MOS类似于PNP的三极管。
2、通俗来讲,对于N-MOS来说当栅极G的电压大于源极S的电压时,N-MOS可以导通工作,反之不能工作。
对于P-MOS来说当栅极G的电压小于源极S的电压时,P-MOS可以导通工作,反之不能工作。基本原理和三极管类似。
了解完场效应晶体管的工作原理后,我们可以知道,在推挽输出模式下:
1、如果写入逻辑1时,经过输出控制里的反相器后,将变为逻辑0,此时N-MOS不能导通而P-MOS可以导通。因此IO引脚被P-MOS拉高到VDD,因此GPIO引脚将输出一个高电平1。
2、如果写入逻辑0时,经过输出控制里的反相器后,将变为逻辑1,此时N-MOS可以导通而P-MOS不能导通。因此IO引脚被N-MOS拉低到低电平Vss,因此GPIO引脚将输出一个低电平0。
3、对于推挽输出模式来说,它最大的特点就是即便不使用外部上下拉电阻时也能正常输出高低电平。
4、在推挽输出模式下,肖特基触发器是打开的,MCU可以通过读取输入数据寄存器来读取IO引脚的电平状态。

六、开漏输出模式

在开漏输出模式下,P-MOS管会一直关闭(相当于不存在PMOS管),只有N-MOS管可以工作,同理:
1、如果写入逻辑1时,经过输出控制里的反相器后,将变为逻辑0,此时N-MOS不能导通,而P-MOS一直处于关闭状态,因此对于外部的IO引脚来说处于断路状态(相当于IO引脚连接了一个电阻值无穷大的电阻到地),IO状态呈高阻态。
2、如果写入逻辑0时,经过输出控制里的反相器后,将变为逻辑1,此时N-MOS可以导通,而P-MOS一直处于关闭状态。因此IO引脚被N-MOS拉低到低电平Vss,因此GPIO引脚将输出一个低电平0。
3、对于开漏输出来说,最大的特点是本身只能输出低电平而无法输出高电平,如果在开漏输出模式下想要IO引脚输出高电平则必须在IO引脚外部接入上拉电阻从而实现输出高电平。常用的I2C通讯就是采用这种模式。
4、在开漏模式下,肖特基触发器处于开启状态。MCU可以通过输入数据寄存器来获取IO端口的状态。通过这个特点,我们便可以实现IO端口的双向通讯:例如MCU要输出逻辑1,此时N-MOS管处于关闭状态,IO端口的电平将完全由外部电路决定。因此,MCU可以通过输入数据寄存器读到外部电路的信号,而不是它自己输出的逻辑1(外接上拉电阻的情况下)。这种方式在使用I2C总线进行主从机通讯时会用到。 
5、开漏输出还有一个特性就是可以很方便的调节输出的电平,因为输出电平完全由上拉电阻所连接的电源的电平决定。所以在需要进行电平转换的地方,非常适合使用开漏输出。
6、开漏输出模式还可以实现"线与"功能,所谓的"线与"指的是多个信号线直接连接在一起,只有当所有信号线全部为高电平时,合在一起的总线电平为高电平;只要有任意一个或者多个信号线为低电平,则总线电平就为低电平。当多个开漏输出的IO引脚连接在一起时,如果所有开漏输出IO都输出高电平,才能输出高电平。但凡有一个开漏输出IO输出低电平,所有的IO引脚电压都会被这一个拉低。

七、复用推挽输出模式

1、对于复用推挽输出来说,和普通的推挽输出类似,只不过复用模式下,一个IO引脚不在作为普通的GPIO使用而是转而作为其他外设功能引脚使用,IO引脚的状态是由对应的外设控制而不再是输出数据寄存器控制。
2、因此在复用模式下需要打开相应外设的时钟,否则IO引脚将无法正常输出。
3、另外在开复用推挽输出模式下,肖特基触发器是打开的,我们仍然可以通过输入数据寄存器来读取IO口的电平状态。

八、复用开漏输出模式

1、在复用开漏输出模式下,引脚的状态是由对应的外设控制,而不是输出数据寄存器。
2、另外在复用开漏模式下,肖特基触发器是打开的,我们可以通过输入数据寄存器来读取IO口的电平状态。
3、和开漏输出模式一样,在使用复用开漏输出模式时,同样的需要在IO引脚外部引入上拉电阻。

这篇关于STM32的GPIO端口的八种模式解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/909011

相关文章

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库