STM32的GPIO端口的八种模式解析

2024-04-16 14:12

本文主要是介绍STM32的GPIO端口的八种模式解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

STM32的GPIO端口的八种模式解析

一、上拉输入模式

二、下拉输入模式

三、浮空输入模式

四、模拟输入模式

五、推挽输出模式

六、开漏输出模式

七、复用推挽输出模式

八、复用开漏输出模式


STM32的GPIO端口的八种模式解析

在学习STM32的过程中,GPIO端口是最为基础的外设接口。GPIO(general purpose input output),即通用输入输出端口。STM32芯片通过GPIO端口来与外部的各种设备进行通讯、实现控制或者采集来自外部设备输出的信号。
GPIO按照输入或者输出模式不同可以划分为以下八种模式:
输入模式四种:上拉输入模式下拉输入模式浮空输入模式模拟输入模式
输出模式四种:推挽输出模式开漏输出模式复用推挽输出模式复用开漏输出模式
这里以stm32f103系列芯片为例,依次介绍上面的每一种模式。下面的图是stm32f103中文参考手册里的GPIO端口的基本结构图。

一、上拉输入模式

1、如上图所示,GPIO工作在上拉输入模式时,上拉开关闭合,下拉开关断开,肖特基触发器打开。
2、此时,当IO引脚没有外部输入时,GPIO引脚默认会输入一个高电平。可以通过读取输入数据寄存器来读取到此时的IO电平。
3、需要注意的是,为了避免芯片内部的上下拉对外部输入的电平信号有太大的影响,在芯片内部的这两个上拉或者下拉都呈现一种弱上拉和弱下拉。这是由于内部的两个上下拉的电阻的阻值比较大(一般为几十千欧)。

二、下拉输入模式

1、如上图所示,GPIO工作在下拉输入模式时,上拉开关断开,下拉开关闭合,肖特基触发器打开。
2、此时,当IO引脚没有外部输入时,GPIO引脚默认会输入一个低电平。可以通过读取输入数据寄存器来读取到此时的IO电平。
3、需要注意的是,为了避免芯片内部的上下拉对外部输入的电平信号有太大的影响,在芯片内部的这两个上拉或者下拉都是一种弱上拉和弱下拉。这是由于内部的两个上下拉的电阻的阻值比较大(一般为几十千欧)。

三、浮空输入模式

1、如上图所示,GPIO工作在浮空输入模式时,上拉开关和下拉开关均断开,肖特基触发器打开。
2、此时,如果外部的IO引脚什么都不接(即悬空状态),可以知道GPIO引脚的电平将是一个不确定的状态。它将完全由外部的输入电平来确定。

四、模拟输入模式

1、对于模拟输入模式来说,肖特基触发器关闭,数据不在经过触发器模块。并且内部上下拉全部断开。
2、该模式一般是给芯片内部的ADC外设来使用的,用于采集来自芯片外部的模拟信号。如上图所示,来自外部的模拟信号直接进入片上ADC外设进行处理。
3、在模拟输入模式下可以知道MCU将无法通过读取输入数据寄存器获得IO引脚的电平变化状态。

五、推挽输出模式

1、如上图所示,GPIO在推挽输出模式下,方框中的输出控制模块相当于一个反相器。
2、在推挽输出模式下,输出驱动器中的P-MOS和N-MOS晶体管每次只有一个能正常工作。在介绍输出模式前我们先简单介绍下场效应管的结构及工作原理。

1、上图所示为输出驱动器中的P-MOS和N-MOS场效应晶体管的结构图,对于场效应晶体管来说,和普通三极管类似有栅极G,源极S和漏极D三个电极,它们分别对应三极管的基级B、发射极E和集电极C。N-MOS类似于NPN的三极管,P-MOS类似于PNP的三极管。
2、通俗来讲,对于N-MOS来说当栅极G的电压大于源极S的电压时,N-MOS可以导通工作,反之不能工作。
对于P-MOS来说当栅极G的电压小于源极S的电压时,P-MOS可以导通工作,反之不能工作。基本原理和三极管类似。
了解完场效应晶体管的工作原理后,我们可以知道,在推挽输出模式下:
1、如果写入逻辑1时,经过输出控制里的反相器后,将变为逻辑0,此时N-MOS不能导通而P-MOS可以导通。因此IO引脚被P-MOS拉高到VDD,因此GPIO引脚将输出一个高电平1。
2、如果写入逻辑0时,经过输出控制里的反相器后,将变为逻辑1,此时N-MOS可以导通而P-MOS不能导通。因此IO引脚被N-MOS拉低到低电平Vss,因此GPIO引脚将输出一个低电平0。
3、对于推挽输出模式来说,它最大的特点就是即便不使用外部上下拉电阻时也能正常输出高低电平。
4、在推挽输出模式下,肖特基触发器是打开的,MCU可以通过读取输入数据寄存器来读取IO引脚的电平状态。

六、开漏输出模式

在开漏输出模式下,P-MOS管会一直关闭(相当于不存在PMOS管),只有N-MOS管可以工作,同理:
1、如果写入逻辑1时,经过输出控制里的反相器后,将变为逻辑0,此时N-MOS不能导通,而P-MOS一直处于关闭状态,因此对于外部的IO引脚来说处于断路状态(相当于IO引脚连接了一个电阻值无穷大的电阻到地),IO状态呈高阻态。
2、如果写入逻辑0时,经过输出控制里的反相器后,将变为逻辑1,此时N-MOS可以导通,而P-MOS一直处于关闭状态。因此IO引脚被N-MOS拉低到低电平Vss,因此GPIO引脚将输出一个低电平0。
3、对于开漏输出来说,最大的特点是本身只能输出低电平而无法输出高电平,如果在开漏输出模式下想要IO引脚输出高电平则必须在IO引脚外部接入上拉电阻从而实现输出高电平。常用的I2C通讯就是采用这种模式。
4、在开漏模式下,肖特基触发器处于开启状态。MCU可以通过输入数据寄存器来获取IO端口的状态。通过这个特点,我们便可以实现IO端口的双向通讯:例如MCU要输出逻辑1,此时N-MOS管处于关闭状态,IO端口的电平将完全由外部电路决定。因此,MCU可以通过输入数据寄存器读到外部电路的信号,而不是它自己输出的逻辑1(外接上拉电阻的情况下)。这种方式在使用I2C总线进行主从机通讯时会用到。 
5、开漏输出还有一个特性就是可以很方便的调节输出的电平,因为输出电平完全由上拉电阻所连接的电源的电平决定。所以在需要进行电平转换的地方,非常适合使用开漏输出。
6、开漏输出模式还可以实现"线与"功能,所谓的"线与"指的是多个信号线直接连接在一起,只有当所有信号线全部为高电平时,合在一起的总线电平为高电平;只要有任意一个或者多个信号线为低电平,则总线电平就为低电平。当多个开漏输出的IO引脚连接在一起时,如果所有开漏输出IO都输出高电平,才能输出高电平。但凡有一个开漏输出IO输出低电平,所有的IO引脚电压都会被这一个拉低。

七、复用推挽输出模式

1、对于复用推挽输出来说,和普通的推挽输出类似,只不过复用模式下,一个IO引脚不在作为普通的GPIO使用而是转而作为其他外设功能引脚使用,IO引脚的状态是由对应的外设控制而不再是输出数据寄存器控制。
2、因此在复用模式下需要打开相应外设的时钟,否则IO引脚将无法正常输出。
3、另外在开复用推挽输出模式下,肖特基触发器是打开的,我们仍然可以通过输入数据寄存器来读取IO口的电平状态。

八、复用开漏输出模式

1、在复用开漏输出模式下,引脚的状态是由对应的外设控制,而不是输出数据寄存器。
2、另外在复用开漏模式下,肖特基触发器是打开的,我们可以通过输入数据寄存器来读取IO口的电平状态。
3、和开漏输出模式一样,在使用复用开漏输出模式时,同样的需要在IO引脚外部引入上拉电阻。

这篇关于STM32的GPIO端口的八种模式解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/909011

相关文章

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

CentOS7更改默认SSH端口与配置指南

《CentOS7更改默认SSH端口与配置指南》SSH是Linux服务器远程管理的核心工具,其默认监听端口为22,由于端口22众所周知,这也使得服务器容易受到自动化扫描和暴力破解攻击,本文将系统性地介绍... 目录引言为什么要更改 SSH 默认端口?步骤详解:如何更改 Centos 7 的 SSH 默认端口1

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

如何使用Nginx配置将80端口重定向到443端口

《如何使用Nginx配置将80端口重定向到443端口》这篇文章主要为大家详细介绍了如何将Nginx配置为将HTTP(80端口)请求重定向到HTTPS(443端口),文中的示例代码讲解详细,有需要的小伙... 目录1. 创建或编辑Nginx配置文件2. 配置HTTP重定向到HTTPS3. 配置HTTPS服务器

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思