转载_Linux内核OOPS调试

2024-04-16 07:38
文章标签 linux 调试 内核 转载 oops

本文主要是介绍转载_Linux内核OOPS调试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以前在写驱动的时候 ,遇到比较多的kernel panic oops 问题,然后 
问一些 同事 ,比较多的回答都是加 printk,其实用 GDB 的中的一个功能是能很方便地调试这些问题的。

整理了一下,把自己给一家培训学校写的课件 贴上来。



•第一章 调试 
• 
•1.1. 工作环境配置 
• 
•1 )安装好编译用的 kernel-source :RedHat :kernel-devel-xxx.rpm, 
•     suse:kernel-source-xxx.rpm, 自己编译的 kernel source ; 
•2 ) GCC 包, gcc,g++,cpp, 
•3) as,ld,objdump,etc 
•4) glibc/uclibc 
•5) make 
•6) gdb 
•7 ) SSH 工具 : SSH secure Shell 用于 windows 系统与 Linux 系统之间的文件传输 
•8 )串口工具,用于调试拿 log 信息, windos 下用超级终端或者 secureCRT , Linux 
•下用 minicom ,C-Kermit 
• 
•1.2 printk 
•在内核中 printk () 的级别定义: 
•#define  KERN_EMERG  "<0>"  /* system is unusable  */ 
•#define  KERN_ALERT  "<1>"  /* action must be taken immediately  */ 
•#define  KERN_CRIT  "<2>"  /* critical conditions  */ 
•#define  KERN_ERR  "<3>"  /* error conditions  */ 
•#define  KERN_WARNING  "<4>"  /* warning conditions  */ 
•#define  KERN_NOTICE  "<5>"  /* normal but significant condition  */ 
•#define  KERN_INFO  "<6>"  /* informational  */ 
•#define  KERN_DEBUG  "<7>"  /* debug-level messages  */ 
•通过 /proc/sys/kernel/printk 文件可以调节 printk 的输出级别, 
•通过如下命令可以使得 Linux 内核的任何 printk 都被输出: 
•#echo 8 > /proc/sys/kernel/printk 
•同时设置 grub.conf : 
•在 Kernel  这一行加上 : console=tty0,console=ttyS0,115200 
• 
•1.3 oops 和 panic 
•1.3.1 API oops DEBUG 
• 
•1.3.1.1. 定位 OOPS 
•示例: apioops.c: 
• 
•#include <stdio.h> 
•#include <stdlib.h> 
•Const char array[]="/x6b/xc0 "; 
•int main(int argc, char *argv[]) 
•{ 
•        printf("%p/n", array); 
•        *(int *)0 = 0; 
•} 
• 
•1. )编译时打开 complie with debug info 选项 (-g) , 选项 
•[root@localhost ~]# gcc -g -o apioops apioops.c 
• 
 
•2 )执行 api_oops: 
•[root@localhost ~]# ./apioops 
• 
•显示屏输出信息 
•0x4005e0 
•Segmentation fault 
•[root@localhost ~]# 
• 
•串口输出信息: 
•apioops[28910]: segfault at 0000000000000000 rip 00000000004004c0 rsp 00007fff22e15760 error 6 
•rip 00000000004004c0  : 表示执行到这个位置是 出错 
• 
•EIP RIP 值 一般表示代码运行时 ,出错的位置 
• 
3 )调试 
•[root@localhost ~]# gdb apioops 
•GNU gdb Fedora (6.8-27.el5) 
•Copyright (C) 2008 Free Software Foundation, Inc. 
•License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> 
•This is free software: you are free to change and redistribute it. 
•There is NO WARRANTY, to the extent permitted by law.  Type "show copying" 
•and "show warranty" for details. 
•This GDB was configured as "x86_64-redhat-linux-gnu"... 
•( gdb ) 
• 
•1.list 调试 RIP 地址:很明显 出错在第 11 行 ,访问空指针 
•(gdb) l*0x4004c0 
•0x4004c0 is in main (apioops.c:11). 
•6 
•7       const char array[] = "/x63/x2e"; 
•8       int main(int argc, char *argv[]) 
•9       { 
•10              printf("%p/n", array); 
•11              *(int *)0 = 0; 
•12      } 
•(gdb) 
• 
•2. run apioops ,很明显 11 行 出错 
•(gdb) r 
•Starting program: /root/apioops 
•0x4005c8 
•Program received signal SIGSEGV, Segmentation fault. 
•0x00000000004004c0 in main (argc=1, argv=0x7fffa7020a28) at oops.c:11 
•11              *(int *)0 = 0; 
•(gdb) 
• 
•3) 编译时没打开 complie with debug info 选项 (-g) , 选项的调试,或者只有 error 信息没有 代码的调试 。 
•1. 运行 run 
•(gdb) r 
•Starting program: /root/apioops 
•(no debugging symbols found) 
•(no debugging symbols found) 
•0x4005c8 
•Program received signal SIGSEGV, Segmentation fault. 
•0x00000000004004c0 in main () 
•(gdb) 
• 
• 
•2. 反汇编 
•( gdb ) disassemble 
•Dump of assembler code for function main: 
•0x0000000000400498 <main+0>:    push   % rbp 
•0x0000000000400499 <main+1>:    mov     % rsp,%rbp 
•0x000000000040049c <main+4>:    sub    $0x10,%rsp 
•0x00000000004004a0 <main+8>:    mov     %edi,-0x4(% rbp ) 
•0x00000000004004a3 <main+11>:   mov     %rsi,-0x10(% rbp ) 
•0x00000000004004a7 <main+15>:   mov     $0x4005c8,%esi 
•0x00000000004004ac <main+20>:   mov     $0x4005cb,%edi 
•0x00000000004004b1 <main+25>:   mov     $0x0,%eax 
•0x00000000004004b6 <main+30>:   callq   0x400398 < printf@plt > 
•0x00000000004004bb <main+35>:   mov     $0x0,%eax 
•0x00000000004004c0 <main+40>:   movl    $0x0,(% rax ) 
•0x00000000004004c6 <main+46>:   leaveq 
•0x00000000004004c7 <main+47>:   retq    
•End of assembler dump. 
•( gdb ) 
•可以看到出错地址 
•0x00000000004004c0 <main+40>:   movl    $0x0,(% rax ) 
•表明是这个地址的代码访问了空指针 
• 
•3. 使用 objdump 反汇编出所有的信息 查看: 
•[root@localhost ~]# objdump -d apioops > log 
•…………………………………. 
•0000000000400498 <main>: 
•  400498:       55                      push   %rbp 
•  400499:       48 89 e5                mov    %rsp,%rbp 
•  40049c:       48 83 ec 10             sub    $0x10,%rsp 
•  4004a0:       89 7d fc                mov    %edi,0xfffffffffffffffc(%rbp) 
•  4004a3:       48 89 75 f0             mov    %rsi,0xfffffffffffffff0(%rbp) 
•  4004a7:       be c8 05 40 00          mov    $0x4005c8,%esi 
•  4004ac:       bf cb 05 40 00          mov    $0x4005cb,%edi 
•  4004b1:       b8 00 00 00 00          mov    $0x0,%eax 
•  4004b6:       e8 dd fe ff ff          callq  400398 <printf@plt> 
•  4004bb:       b8 00 00 00 00          mov    $0x0,%eax 
•  4004c0:       c7 00 00 00 00 00       movl   $0x0,(%rax) 
•  4004c6:       c9                      leaveq 
•  4004c7:       c3                      retq 
•  4004c8:       90                      nop 
•…………………………………………


•可以看到出错地址 
•0x00000000004004c0 <main+40>:   movl   $0x0,(%rax) 
• 
•1.3.2.kernel oops debug (以 x86 下为例) 
•示例代码: oopsexam.c 
•注意编译的时候代开 compile with  debug info(-g) 
•编译 : make 
•创建设备节点: mknod /dev/oopsexam c 251 0 
•写操作: 
•[root@localhost test]# echo 1 > /dev/oopsexam 
•从串口拿到的 Log: 
• 
•<6>Enter oopsexam_write 
•Unable to handle kernel NULL pointer dereference at 0000000000000000 RIP: 
• [<ffffffff8848401c>] :oops:oopsexam_write+0x1c/0x29 
•PGD 50ccd067 PUD 50ccc067 PMD 0 
•Oops: 0002 [1] SMP 
•last sysfs file: /block/sda/dev 
•CPU 0 
•Modules linked in: oops(FU) ipv6 xfrm_nalgo crypto_api autofs4 hidp rfcomm l2cap bluetooth sunrpc dm_mirror dm_multipath scsi_dh video hwmon backlight sbs i2c_ec button battery asus_acpi acpi_memhotplug ac parport_pc lp parport floppy sg pcspkr i3000_edac edac_mc i2c_i801 i2c_core e1000 serio_raw e1000e dm_raid45 dm_message dm_region_hash dm_log dm_mod dm_mem_cache ata_piix libata shpchp mptsas mptscsih mptbase scsi_transport_sas sd_mod scsi_mod ext3 jbd uhci_hcd ohci_hcd ehci_hcd 
•Pid: 28853, comm: bash Tainted: GF     2.6.18-128.el5 #1 
• 
• 
•Pid: 28853, comm: bash Tainted: GF     2.6.18-128.el5 #1 
•RIP: 0010:[<ffffffff8848401c>]  [<ffffffff8848401c>] :oops:oopsexam_write+0x1c/0x29 
•RSP: 0018:ffff8100514dbf08  EFLAGS: 00010286 
•RAX: 0000000000000002 RBX: 0000000000000002 RCX: ffffffff802f7aa8 
•RDX: ffffffff802f7aa8 RSI: 0000000000000000 RDI: ffffffff802f7aa0 
•RBP: 0000000000000002 R08: ffffffff802f7aa8 R09: 0000000000000046 
•R10: ffff8100514dbc98 R11: ffffffff80161742 R12: 00002ba383367000 
•R13: ffff8100514dbf50 R14: 0000000000000000 R15: 0000000000000000 
•FS:  00002ba37fb84dc0(0000) GS:ffffffff803ac000(0000) knlGS:0000000000000000 
•CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b 
•CR2: 0000000000000000 CR3: 00000000508c4000 CR4: 00000000000006e0 
•Process bash (pid: 28853, threadinfo ffff8100514da000, task ffff810051eb97a0) 
•Stack:  ffff810068aebd80 ffffffff8001659e c000003e00000001 ffff810068aebd80 
• 0000000000000002 fffffffffffffff7 00002ba383367000 ffffffff80016e6b 
• 0000000000000000 0000000000000000 0000000000000000 0000000000000002 
•Call Trace: 
• [<ffffffff8001659e>] vfs_write+0xce/0x174 
• [<ffffffff80016e6b>] sys_write+0x45/0x6e 
• [<ffffffff8005d28d>] tracesys+0xd5/0xe0 
•Code: c7 04 25 00 00 00 00 01 00 00 00 5b c3 53 48 c7 c6 a7 40 48 
•RIP  [<ffffffff8848401c>] :oops:oopsexam_write+0x1c/0x29 
• RSP <ffff8100514dbf08> 
•CR2: 0000000000000000 
• <0>Kernel panic - not syncing: Fatal exception 
• 
•很关键的地方 : 
•RIP  [<ffffffff8848401c>] :oops:oopsexam_write+0x1c/0x29 
调试: 
•[root@localhost test]# gdb oops.ko 
•GNU gdb Fedora (6.8-27.el5) 
•Copyright (C) 2008 Free Software Foundation, Inc. 
•License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> 
•This is free software: you are free to change and redistribute it. 
•There is NO WARRANTY, to the extent permitted by law.  Type "show copying" 
•and "show warranty" for details. 
•This GDB was configured as "x86_64-redhat-linux-gnu"... 
•(gdb) 
•1. list 调试: 
•(gdb) l*oopsexam_write+0x1c 
•0x1c is in oopsexam_write (/home/test/examoops.c:73). 
•warning: Source file is more recent than executable. 
•68        *off) 
•69      { 
•70        int *p=0;  
•71        
•72         printk(KERN_INFO "Enter %s/n",__func__); 
•73        *p  = 1;    //create oops 
•74       return len; 
•75      } 
•76 
•77      module_init(oopsexam_init); 
•(gdb) 
• 
• 
• 
•开发板上 NFS 环境下的 log 类似于以下信息,调试方法同上 
• 
•[root@utu-linux /test]# echo 1 >/dev/oopsexam 
•<6>Enter oopsexam_write 
•Unable to handle kernel NULL pointer dereference at virtual address 00000000 
•pgd = c3ca4000 
•[00000000] *pgd=33c96031, *pte=00000000, *ppte=00000000 
•Internal error: Oops: 817 [#1] 
•Modules linked in: oopsexam utuled button 
•CPU: 0 
•PC is at oopsexam_write+0x28/0x38 [oopsexam] 
•LR is at 0x1 
•pc : [<bf004060>]    lr : [<00000001>]    Not tainted 
•sp : c3c29f3c  ip : 60000093  fp : c3c29f4c 
•r10: c3c29f78  r9 : c3c28000  r8 : c3c28000 
•r7 : 40177000  r6 : c0628300  r5 : 00000000  r4 : 00000002 
•r3 : 00000000  r2 : 00000001  r1 : 00004830  r0 : 00000002 
•Flags: nZCv  IRQs on  FIQs on  Mode SVC_32  Segment user 
•Control: C000717F  Table: 33CA4000  DAC: 00000015 
•Process echo (pid: 829, stack limit = 0xc3c28194) 
•Stack: (0xc3c29f3c to 0xc3c2a000) 
• 
•Stack: (0xc3c29f3c to 0xc3c2a000) 
•9f20:                                                                00000002 
•9f40: c3c29f74 c3c29f50 c0070d84 bf004048 c0628324 c0628300 c3c29f78 00000000 
•9f60: 00000000 401736bc c3c29fa4 c3c29f78 c0070ebc c0070cd4 00000000 00000000 
•9f80: 00000000 00000002 40177000 40171c8c 00000004 c0022024 00000000 c3c29fa8 
•9fa0: c0021ea0 c0070e80 00000002 c002877c 00000001 40177000 00000002 00000000 
•9fc0: 00000002 40177000 40171c8c 40177000 00000002 0000c06c 401736bc bec36e68 
•9fe0: 00000000 bec36dc4 00001920 40113490 60000010 00000001 00646f6d 00000000 
•Backtrace: 
•[<bf004038>] (oopsexam_write+0x0/0x38 [oopsexam]) from [<c0070d84>] (vfs_write+0 
•xc0/0x138) 
• r4 = 00000002 
•[<c0070cc4>] (vfs_write+0x0/0x138) from [<c0070ebc>] (sys_write+0x4c/0x74) 
•[<c0070e70>] (sys_write+0x0/0x74) from [<c0021ea0>] (ret_fast_syscall+0x0/0x2c) 
• r8 = C0022024  r7 = 00000004  r6 = 40171C8C  r5 = 40177000 
• r4 = 00000002 
•Code: eb40d1be e3a02001 e3a03000 e1a00004 (e5832000) 
• Segmentation fault 
• 
•2. objdump 
•Objdump –d oopsexam.ko > log 
•Vim log : 查看地址: oopsexam_write+0x1c 
•0000000000000000 <oopsexam_write>: 
•   0:   53                      push   %rbx 
•   1:   48 c7 c6 00 00 00 00    mov    $0x0,%rsi 
•   8:   48 89 d3                mov    %rdx,%rbx 
•   b:   48 c7 c7 00 00 00 00    mov    $0x0,%rdi 
•  12:   31 c0                   xor    %eax,%eax 
•  14:   e8 00 00 00 00          callq  19 <oopsexam_write+0x19> 
•  19:   48 89 d8                mov    %rbx,%rax 
•  1c:   c7 04 25 00 00 00 00    movl   $0x1,0x0 
•  23:   01 00 00 00 
•  27:   5b                      pop    %rbx 
•  28:   c3                      retq 
•很明显 ,往一个空指针 赋值 1 
• 

•如何找到对应的代码,那就的对应着代码看汇编。





/********************************************************************************************************************************************/

什么是Oops?从语言学的角度说,Oops应该是一个拟声词。当出了点小事故,或者做了比较尴尬的事之后,你可以说"Oops",翻译成中国话就叫做“哎呦”。“哎呦,对不起,对不起,我真不是故意打碎您的杯子的”。看,Oops就是这个意思。

在Linux内核开发中的Oops是什么呢?其实,它和上面的解释也没什么本质的差别,只不过说话的主角变成了Linux。当某些比较致命的问题出现时,我们的Linux内核也会抱歉的对我们说:“哎呦(Oops),对不起,我把事情搞砸了”。Linux内核在发生kernel panic时会打印出Oops信息,把目前的寄存器状态、堆栈内容、以及完整的Call trace都show给我们看,这样就可以帮助我们定位错误。

下面,我们来看一个实例。为了突出本文的主角--Oops,这个例子唯一的作用就是造一个空指针引用错误。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include <linux/kernel.h>
#include <linux/module.h>
static  int  __init hello_init( void )
{
     int  *p = 0;
     
     *p = 1;
     return  0;
}
static  void  __exit hello_exit( void )
{
     return ;
}
module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE( "GPL" );

很明显,错误的地方就是第8行。

接下来,我们把这个模块编译出来,再用insmod来插入到内核空间,正如我们预期的那样,Oops出现了。

[  100.243737] BUG: unable to handle kernel NULL pointer dereference at (null)

[  100.244985] IP: [<f82d2005>] hello_init+0x5/0x11 [hello]

[  100.262266] *pde = 00000000 

[  100.288395] Oops: 0002 [#1] SMP 

[  100.305468] last sysfs file: /sys/devices/virtual/sound/timer/uevent

[  100.325955] Modules linked in: hello(+) vmblock vsock vmmemctl vmhgfs acpiphp snd_ens1371 gameport snd_ac97_codec ac97_bus snd_pcm_oss snd_mixer_oss snd_pcm snd_seq_dummy snd_seq_oss snd_seq_midi snd_rawmidi snd_seq_midi_event snd_seq snd_timer snd_seq_device ppdev psmouse serio_raw fbcon tileblit font bitblit softcursor snd parport_pc soundcore snd_page_alloc vmci i2c_piix4 vga16fb vgastate intel_agp agpgart shpchp lp parport floppy pcnet32 mii mptspi mptscsih mptbase scsi_transport_spi vmxnet

[  100.472178] [  100.494931] Pid: 1586, comm: insmod Not tainted (2.6.32-21-generic #32-Ubuntu) VMware Virtual Platform

[  100.540018] EIP: 0060:[<f82d2005>] EFLAGS: 00010246 CPU: 0

[  100.562844] EIP is at hello_init+0x5/0x11 [hello]

[  100.584351] EAX: 00000000 EBX: fffffffc ECX: f82cf040 EDX: 00000001

[  100.609358] ESI: f82cf040 EDI: 00000000 EBP: f1b9ff5c ESP: f1b9ff5c

[  100.631467]  DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068

[  100.657664] Process insmod (pid: 1586, ti=f1b9e000 task=f137b340 task.ti=f1b9e000)

[  100.706083] Stack:

[  100.731783]  f1b9ff88 c0101131 f82cf040 c076d240 fffffffc f82cf040 0072cff4 f82d2000

[  100.759324] <0> fffffffc f82cf040 0072cff4 f1b9ffac c0182340 f19638f8 f137b340 f19638c0

[  100.811396] <0> 00000004 09cc9018 09cc9018 00020000 f1b9e000 c01033ec 09cc9018 00015324

[  100.891922] Call Trace:

[  100.916257]  [<c0101131>] ? do_one_initcall+0x31/0x190

[  100.943670]  [<f82d2000>] ? hello_init+0x0/0x11 [hello]

[  100.970905]  [<c0182340>] ? sys_init_module+0xb0/0x210

[  100.995542]  [<c01033ec>] ? syscall_call+0x7/0xb

[  101.024087] Code: <c7> 05 00 00 00 00 01 00 00 00 5d c3 00 00 00 00 00 00 00 00 00 00 

[  101.079592] EIP: [<f82d2005>] hello_init+0x5/0x11 [hello] SS:ESP 0068:f1b9ff5c

[  101.134682] CR2: 0000000000000000

[  101.158929] ---[ end trace e294b69a66d752cb ]---

Oops首先描述了这是一个什么样的bug,然后指出了发生bug的位置,即“IP: [<f82d2005>] hello_init+0x5/0x11 [hello]”。

在这里,我们需要用到一个辅助工具objdump来帮助分析问题。objdump可以用来反汇编,命令格式如下:

objdump -S  hello.o

下面是hello.o反汇编的结果,而且是和C代码混排的,非常的直观。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
hello.o:     file format elf32-i386
Disassembly of section .init.text:
00000000 <init_module>:
#include <linux/kernel.h>
#include <linux/module.h>
static  int  __init hello_init( void )
{
    0:   55                      push   %ebp
     int  *p = 0;
     
     *p = 1;
     
     return  0;
}
    1:   31 c0                   xor    %eax,%eax
#include <linux/kernel.h>
#include <linux/module.h>
static  int  __init hello_init( void )
{
    3:   89 e5                   mov    %esp,%ebp
     int  *p = 0;
     
     *p = 1;
    5:   c7 05 00 00 00 00 01    movl   $0x1,0x0
    c:   00 00 00
     
     return  0;
}
    f:   5d                      pop    %ebp
   10:   c3                      ret   
Disassembly of section . exit .text:
00000000 <cleanup_module>:
static  void  __exit hello_exit( void )
{
    0:   55                      push   %ebp
    1:   89 e5                   mov    %esp,%ebp
    3:   e8 fc ff ff ff          call   4 <cleanup_module+0x4>
     return ;
}
    8:   5d                      pop    %ebp
    9:   c3                      ret   

对照Oops的提示,我们可以很清楚的看到,出错的位置hello_init+0x5的汇编代码是:

?
1
5:c7 05 00 00 00 00 01 movl   $0x1,0x0

这句代码的作用是把数值1存入0这个地址,这个操作当然是非法的。

我们还能看到它对应的c代码是:

?
1
*p = 1;

Bingo!在Oops的帮助下我们很快就解决了问题。

 

我们再回过头来检查一下上面的Oops,看看Linux内核还有没有给我们留下其他的有用信息。

Oops: 0002 [#1]

这里面,0002表示Oops的错误代码(写错误,发生在内核空间),#1表示这个错误发生一次。

Oops的错误代码根据错误的原因会有不同的定义,本文中的例子可以参考下面的定义(如果发现自己遇到的Oops和下面无法对应的话,最好去内核代码里查找):

 * error_code:
 *      bit 0 == 0 means no page found, 1 means protection fault
 *      bit 1 == 0 means read, 1 means write
 *      bit 2 == 0 means kernel, 1 means user-mode
 *      bit 3 == 0 means data, 1 means instruction

有时候,Oops还会打印出Tainted信息。这个信息用来指出内核是因何种原因被tainted(直译为“玷污”)。具体的定义如下:

  1: 'G' if all modules loaded have a GPL or compatible license, 'P' if any proprietary module has been loaded.  Modules without a MODULE_LICENSE or with a MODULE_LICENSE that is not recognised by insmod as GPL compatible are assumed to be proprietary.
  2: 'F' if any module was force loaded by "insmod -f", ' ' if all modules were loaded normally.
  3: 'S' if the oops occurred on an SMP kernel running on hardware that hasn't been certified as safe to run multiprocessor. Currently this occurs only on various Athlons that are not SMP capable.
  4: 'R' if a module was force unloaded by "rmmod -f", ' ' if all modules were unloaded normally.
  5: 'M' if any processor has reported a Machine Check Exception, ' ' if no Machine Check Exceptions have occurred.
  6: 'B' if a page-release function has found a bad page reference or some unexpected page flags.
  7: 'U' if a user or user application specifically requested that the Tainted flag be set, ' ' otherwise.
  8: 'D' if the kernel has died recently, i.e. there was an OOPS or BUG.
  9: 'A' if the ACPI table has been overridden.
 10: 'W' if a warning has previously been issued by the kernel. (Though some warnings may set more specific taint flags.)
 11: 'C' if a staging driver has been loaded.
 12: 'I' if the kernel is working around a severe bug in the platform firmware (BIOS or similar).

基本上,这个Tainted信息是留给内核开发者看的。用户在使用Linux的过程中如果遇到Oops,可以把Oops的内容发送给内核开发者去debug,内核开发者根据这个Tainted信息大概可以判断出kernel panic时内核运行的环境。如果我们只是debug自己的驱动,这个信息就没什么意义了。

 

本文的这个例子非常简单,Oops发生以后没有造成宕机,这样我们就可以从dmesg中查看到完整的信息。但更多的情况是Oops发生的同时系统也会宕机,此时这些出错信息是来不及存入文件中的,关掉电源后就无法再看到了。我们只能通过其他的方式来记录:手抄或者拍照。

还有更坏的情况,如果Oops信息过多的话,一页屏幕显示不全,我们怎么来查看完整的内容呢?第一种方法,在grub里用vga参数指定更高的分辨率以使屏幕可以显示更多的内容。很明显,这个方法其实解决不了太多的问题;第二种方法,使用两台机器,把调试机的Oops信息通过串口打印到宿主机的屏幕上。但现在大部分的笔记本电脑是没有串口的,这个解决方法也有很大的局限性;第三种方法,使用内核转储工具kdump把发生Oops时的内存和CPU寄存器的内容dump到一个文件里,之后我们再用gdb来分析问题。

 

开发内核驱动的过程中可能遇到的问题是千奇百怪的,调试的方法也是多种多样,Oops是Linux内核给我们的提示,我们要用好它。



/************************************************************************************************************************************************/

这几天一直在调试atmel at91sam9x25的串口,用着用着总会导致Oops,Oops内容如下:
[ 1023.510000] Unable to handle kernel NULL pointer dereference at virtual address 00000000
[ 1023.520000] pgd = c0004000
[ 1023.520000] [00000000] *pgd=00000000
[ 1023.520000] Internal error: Oops: 17 [#1]
[ 1023.520000] last sysfs file: /sys/devices/virtual/misc/at91flash/dev
[ 1023.520000] Modules linked in: at91flash at91gpio at91mc323 ds18b20 at91adc
[ 1023.520000] CPU: 0    Tainted: G        W    (2.6.39 #35)
[ 1023.520000] PC is at atmel_tasklet_func+0x104/0x690
[ 1023.520000] LR is at atmel_tasklet_func+0x10/0x690

[ 1023.520000] pc : [<c01a33ac>]    lr : [<c01a32b8>]    psr: 20000013
[ 1023.520000] sp : c7825f58  ip : 60000093  fp : 00000000
[ 1023.520000] r10: 00000006  r9 : 00000000  r8 : 0000000a
[ 1023.520000] r7 : 00000000  r6 : c7824000  r5 : c78a2484  r4 : c03c0cb8
[ 1023.520000] r3 : 0000004c  r2 : 0000004c  r1 : 60000013  r0 : 00000001
[ 1023.520000] Flags: nzCv  IRQs on  FIQs on  Mode SVC_32  ISA ARM  Segment kernel
[ 1023.520000] Control: 0005317f  Table: 27b40000  DAC: 00000017
[ 1023.520000] Process ksoftirqd/0 (pid: 3, stack limit = 0xc7824270)
[ 1023.520000] Stack: (0xc7825f58 to 0xc7826000)
[ 1023.520000] 5f40:                                                       00000001 c7824000
[ 1023.520000] 5f60: 00000100 0000000a 00000000 00000006 c7825f8c 00000000 00000001 c7824000
[ 1023.520000] 5f80: 00000100 0000000a 00000006 c0045cf8 c03b995c c00461d8 c7aa6ae0 00000000
[ 1023.520000] 5fa0: 60000093 00000000 c7824000 c0046274 00000013 00000000 00000000 c00462e0
[ 1023.520000] 5fc0: 00000000 c7819f70 00000000 c00570e0 00000000 00000000 00000000 00000000
[ 1023.520000] 5fe0: c7825fe0 c7825fe0 c7819f70 c0057060 c0030b14 c0030b14 ffffffff ffffffff
[ 1023.520000] [<c01a33ac>] (atmel_tasklet_func+0x104/0x690) from [<c0045cf8>] (tasklet_action+0x84/0xe
[ 1023.520000] [<c0045cf8>] (tasklet_action+0x84/0xe from [<c00461d8>] (__do_softirq+0x88/0x124)
[ 1023.520000] [<c00461d8>] (__do_softirq+0x88/0x124) from [<c00462e0>] (run_ksoftirqd+0x6c/0x12
[ 1023.520000] [<c00462e0>] (run_ksoftirqd+0x6c/0x12 from [<c00570e0>] (kthread+0x80/0x8
[ 1023.520000] [<c00570e0>] (kthread+0x80/0x8 from [<c0030b14>] (kernel_thread_exit+0x0/0x
[ 1023.520000] Code: 1a000002 e59f057c e59f157c ebfa3d49 (e5973000) 
[ 1023.710000] ---[ end trace 786b41cd25d3b661 ]---
[ 1023.710000] Kernel panic - not syncing: Fatal exception in interrupt
[ 1023.720000] [<c0034b10>] (unwind_backtrace+0x0/0xe0) from [<c02a8af8>] (panic+0x50/0x170)
[ 1023.720000] [<c02a8af8>] (panic+0x50/0x170) from [<c0032e00>] (die+0x184/0x1c4)
[ 1023.730000] [<c0032e00>] (die+0x184/0x1c4) from [<c0035aa8>] (__do_kernel_fault+0x64/0x84)
[ 1023.740000] [<c0035aa8>] (__do_kernel_fault+0x64/0x84) from [<c0035c7c>] (do_page_fault+0x1b4/0x1c
[ 1023.750000] [<c0035c7c>] (do_page_fault+0x1b4/0x1c from [<c002a240>] (do_DataAbort+0x30/0x9
[ 1023.760000] [<c002a240>] (do_DataAbort+0x30/0x98) from [<c002f86c>] (__dabt_svc+0x4c/0x60)
[ 1023.770000] Exception stack(0xc7825f10 to 0xc7825f58)
[ 1023.770000] 5f00:                                     00000001 60000013 0000004c 0000004c
[ 1023.780000] 5f20: c03c0cb8 c78a2484 c7824000 00000000 0000000a 00000000 00000006 00000000
[ 1023.790000] 5f40: 60000093 c7825f58 c01a32b8 c01a33ac 20000013 ffffffff
[ 1023.790000] [<c002f86c>] (__dabt_svc+0x4c/0x60) from [<c01a33ac>] (atmel_tasklet_func+0x104/0x690)
[ 1023.800000] [<c01a33ac>] (atmel_tasklet_func+0x104/0x690) from [<c0045cf8>] (tasklet_action+0x84/0xe8)
[ 1023.810000] [<c0045cf8>] (tasklet_action+0x84/0xe8) from [<c00461d8>] (__do_softirq+0x88/0x124)
[ 1023.820000] [<c00461d8>] (__do_softirq+0x88/0x124) from [<c00462e0>] (run_ksoftirqd+0x6c/0x128)
[ 1023.830000] [<c00462e0>] (run_ksoftirqd+0x6c/0x128) from [<c00570e0>] (kthread+0x80/0x88)
[ 1023.840000] [<c00570e0>] (kthread+0x80/0x88) from [<c0030b14>] (kernel_thread_exit+0x0/0x8)
注意上述红色的地方。
下面就来显示如何定位出出错代码行:
1.首先,编译时打开complie with debug info选项,步则如下
make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- menuconfig
oops1.jpg 
进入 Kernel hacking
oops2.jpg 
选择 Compile the kernel with debug info
然后,保存,退出。
接着 make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
编译, 等编译完成。
2.利用arm-none-linux-gnueabi-gdb 调试,如下:
arm-none-linux-gnueabi-gdb vmlinux
oops3.jpg 
对应着Oops 消息里面的这一行
[ 1023.520000] LR is at atmel_tasklet_func+0x10/0x690
在gdb下键入命令 : l *at atmel_tasklet_func+0x10
oops4.jpg 
这样就找到了出错的代码行。在这里鄙视一下atmel提供的内核,竟然还有bug,fuck it!
从这里可以看出是由于串口的dma导致Oops的,于是我去掉了串口的dma传输。方法如下:
oops5.jpg 
去掉之后还没有发现上述的Oops出现。

这篇关于转载_Linux内核OOPS调试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908174

相关文章

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

linux hostname设置全过程

《linuxhostname设置全过程》:本文主要介绍linuxhostname设置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录查询hostname设置步骤其它相关点hostid/etc/hostsEDChina编程A工具license破解注意事项总结以RHE