本文主要是介绍python-pandas-操作全集(持续更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、基础认识
1. 读取数据.得到基本信息
- 读取语法 pandas.read_csv(“filename”)
- 结构,type()
- 每一列数据类型food_info.dtypes
- 帮助文档help(pandas.read_csv)
import pandass = "../../data/food_info.csv"
food_info = pandas.read_csv(s) # 相对路径即可
print(type(food_info)) # 整体的结构类型
print(food_info.dtypes) # 每一个属性的数据类型
<class 'pandas.core.frame.DataFrame'>
NDB_No int64
Shrt_Desc object
Water_(g) float64
Energ_Kcal int64
Protein_(g) float64
Lipid_Tot_(g) float64
Ash_(g) float64
Carbohydrt_(g) float64
Fiber_TD_(g) float64
Sugar_Tot_(g) float64
Calcium_(mg) float64
Iron_(mg) float64
Magnesium_(mg) float64
Phosphorus_(mg) float64
Potassium_(mg) float64
Sodium_(mg) float64
Zinc_(mg) float64
Copper_(mg) float64
Manganese_(mg) float64
Selenium_(mcg) float64
Vit_C_(mg) float64
Thiamin_(mg) float64
Riboflavin_(mg) float64
Niacin_(mg) float64
Vit_B6_(mg) float64
Vit_B12_(mcg) float64
Vit_A_IU float64
Vit_A_RAE float64
Vit_E_(mg) float64
Vit_D_mcg float64
Vit_D_IU float64
Vit_K_(mcg) float64
FA_Sat_(g) float64
FA_Mono_(g) float64
FA_Poly_(g) float64
Cholestrl_(mg) float64
dtype: object
food_info
NDB_No | Shrt_Desc | Water_(g) | Energ_Kcal | Protein_(g) | Lipid_Tot_(g) | Ash_(g) | Carbohydrt_(g) | Fiber_TD_(g) | Sugar_Tot_(g) | ... | Vit_A_IU | Vit_A_RAE | Vit_E_(mg) | Vit_D_mcg | Vit_D_IU | Vit_K_(mcg) | FA_Sat_(g) | FA_Mono_(g) | FA_Poly_(g) | Cholestrl_(mg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1001 | BUTTER WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 51.368 | 21.021 | 3.043 | 215.0 |
1 | 1002 | BUTTER WHIPPED WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 50.489 | 23.426 | 3.012 | 219.0 |
2 | 1003 | BUTTER OIL ANHYDROUS | 0.24 | 876 | 0.28 | 99.48 | 0.00 | 0.00 | 0.0 | 0.00 | ... | 3069.0 | 840.0 | 2.80 | 1.8 | 73.0 | 8.6 | 61.924 | 28.732 | 3.694 | 256.0 |
3 | 1004 | CHEESE BLUE | 42.41 | 353 | 21.40 | 28.74 | 5.11 | 2.34 | 0.0 | 0.50 | ... | 721.0 | 198.0 | 0.25 | 0.5 | 21.0 | 2.4 | 18.669 | 7.778 | 0.800 | 75.0 |
4 | 1005 | CHEESE BRICK | 41.11 | 371 | 23.24 | 29.68 | 3.18 | 2.79 | 0.0 | 0.51 | ... | 1080.0 | 292.0 | 0.26 | 0.5 | 22.0 | 2.5 | 18.764 | 8.598 | 0.784 | 94.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
8613 | 83110 | MACKEREL SALTED | 43.00 | 305 | 18.50 | 25.10 | 13.40 | 0.00 | 0.0 | 0.00 | ... | 157.0 | 47.0 | 2.38 | 25.2 | 1006.0 | 7.8 | 7.148 | 8.320 | 6.210 | 95.0 |
8614 | 90240 | SCALLOP (BAY&SEA) CKD STMD | 70.25 | 111 | 20.54 | 0.84 | 2.97 | 5.41 | 0.0 | 0.00 | ... | 5.0 | 2.0 | 0.00 | 0.0 | 2.0 | 0.0 | 0.218 | 0.082 | 0.222 | 41.0 |
8615 | 90480 | SYRUP CANE | 26.00 | 269 | 0.00 | 0.00 | 0.86 | 73.14 | 0.0 | 73.20 | ... | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | 0.000 | 0.0 |
8616 | 90560 | SNAIL RAW | 79.20 | 90 | 16.10 | 1.40 | 1.30 | 2.00 | 0.0 | 0.00 | ... | 100.0 | 30.0 | 5.00 | 0.0 | 0.0 | 0.1 | 0.361 | 0.259 | 0.252 | 50.0 |
8617 | 93600 | TURTLE GREEN RAW | 78.50 | 89 | 19.80 | 0.50 | 1.20 | 0.00 | 0.0 | 0.00 | ... | 100.0 | 30.0 | 0.50 | 0.0 | 0.0 | 0.1 | 0.127 | 0.088 | 0.170 | 50.0 |
8618 rows × 36 columns
food_info["Water_(g)"]
0 15.87
1 15.87
2 0.24
3 42.41
4 41.11...
8613 43.00
8614 70.25
8615 26.00
8616 79.20
8617 78.50
Name: Water_(g), Length: 8618, dtype: float64
data = food_info["Water_(g)"]
print(type(data))
print(data)
<class 'pandas.core.series.Series'>
0 15.87
1 15.87
2 0.24
3 42.41
4 41.11...
8613 43.00
8614 70.25
8615 26.00
8616 79.20
8617 78.50
Name: Water_(g), Length: 8618, dtype: float64
for item in data:print(item)
15.87
15.87
0.24
42.41
41.11
48.42
51.8
39.28
37.1
37.65
38.2
79.79
79.64
81.01
81.24
82.48
54.44
41.56
55.22
37.92
13.44
41.46
33.19
48.42
41.01
50.01
48.38
53.78
45.54
41.77
63.11
22.65
29.16
45.45
40.95
71.7
74.41
30.91
39.38
37.12
42.86
39.61
39.08
42.31
43.12
44.0
43.67
47.65
80.57
73.75
63.5
57.71
61.33
80.14
74.46
82.54
74.79
87.67
87.73
65.47
77.27
77.27
2.21
1.47
65.74
60.37
50.21
71.15
88.18
88.13
87.69
89.21
88.86
87.71
89.92
89.81
88.74
90.84
90.38
89.36
90.13
88.2
2.47
3.16
3.96
4.9
2.97
27.16
74.04
79.4
82.3
82.17
82.34
82.45
87.03
87.5
83.39
80.7
72.2
74.45
93.42
3.51
93.12
3.19
87.9
85.07
85.23
79.0
75.3
74.48
74.1
76.15
87.57
52.31
56.77
51.23
69.47
74.62
76.13
75.85
76.4
3.67
1.87
14.62
8.54
2.73
70.83
70.43
74.35
72.5
3.86
17.94
25.0
90.84
87.71
74.04
3.16
3.96
29.01
45.52
60.75
50.87
47.36
66.86
38.06
42.16
39.13
63.1
38.98
75.2
88.97
5.8
89.21
89.92
71.0
78.1
80.6
48.2
87.43
8.6
71.87
71.57
51.5
51.5
58.0
45.8
51.3
76.2
77.7
86.0
66.44
82.17
74.1
50.6
50.06
1.52
50.6
48.2
2.78
88.13
2.47
74.04
51.8
75.3
74.48
75.4
74.1
79.0
87.43
71.57
15.0
12.0
28.71
87.0
42.17
51.42
48.7
87.91
79.0
73.5
59.8
46.3
48.9
48.7
37.43
52.63
48.13
65.52
61.43
79.74
42.48
43.79
39.61
44.0
67.83
85.1
6.53
61.82
44.29
68.92
35.48
57.0
63.6
38.0
36.15
44.81
82.03
76.6
78.5
78.63
79.62
8.46
9.54
10.35
5.44
9.87
8.28
6.04
7.2
10.75
10.58
9.87
7.3
8.86
8.06
8.8
7.7
7.3
8.81
8.84
6.45
9.94
8.17
7.64
5.27
6.23
5.39
9.93
11.24
5.89
12.46
8.05
11.42
5.95
9.31
8.46
9.31
11.9
7.96
9.0
7.74
7.79
12.85
92.06
85.95
83.72
0.2
93.81
65.11
52.58
64.46
85.58
94.78
83.85
85.08
67.77
78.65
85.55
11.3
94.47
76.45
5.7
0.2
5.7
10.75
12.89
82.44
82.44
82.37
78.4
80.5
80.5
81.06
79.6
77.5
76.0
68.3
80.32
80.32
69.8
19.09
69.5
88.9
88.6
82.3
86.34
86.7
76.5
86.84
81.7
81.9
84.17
81.6
86.9
84.94
84.94
84.3
85.75
87.47
87.0
88.6
88.6
85.64
87.25
89.1
83.3
86.9
87.2
86.2
87.3
90.3
88.7
88.22
86.64
88.82
88.5
85.25
86.5
91.85
92.5
92.6
86.2
90.1
92.3
91.0
92.66
92.66
84.8
84.1
86.8
87.3
87.5
88.6
89.5
83.1
83.6
81.4
87.52
84.6
89.6
82.1
84.0
83.65
83.65
88.4
87.8
80.0
79.2
80.3
80.1
74.3
80.0
85.6
87.7
86.9
85.63
85.6
83.14
89.5
89.1
83.8
84.0
84.0
81.1
81.7
88.5
87.8
82.5
87.4
80.6
79.0
83.1
82.8
88.0
87.1
89.0
88.3
87.3
81.3
88.5
88.9
87.6
87.8
86.9
87.3
81.9
87.9
6.8
1.7
6.7
4.5
80.0
79.6
5.9
4.7
82.2
81.8
5.8
6.7
81.0
88.8
88.7
87.2
85.9
5.4
5.7
2.0
80.4
5.3
4.7
5.9
5.6
4.0
6.4
4.5
79.5
80.32
79.8
81.5
81.0
79.8
81.8
81.2
82.9
83.0
77.6
83.4
82.2
83.2
79.9
79.31
88.1
86.5
89.5
88.3
87.76
88.7
90.6
81.5
89.4
90.0
89.8
87.8
85.3
87.3
85.6
86.3
85.4
86.92
92.5
6.0
83.7
81.5
82.19
74.5
79.21
81.81
74.5
81.81
74.5
81.96
74.4
74.2
74.4
81.81
87.5
75.8
2.5
88.0
3.3
88.0
3.3
3.3
75.34
87.38
2.5
88.35
75.7
3.3
75.32
3.0
82.86
2.0
87.5
88.35
75.47
88.35
3.0
2.2
75.47
88.35
2.25
3.4
85.07
85.61
87.54
75.81
2.5
75.7
87.38
87.32
2.5
87.79
76.16
3.5
2.25
75.47
87.79
76.16
88.35
2.25
87.5
80.47
3.0
86.4
2.5
88.35
2.2
80.47
86.6
74.2
2.5
87.5
75.4
2.5
3.0
86.41
82.62
87.32
88.1
76.0
2.0
88.0
76.0
2.0
87.0
3.0
87.0
2.25
87.0
75.88
2.2
87.79
2.25
76.16
75.81
87.54
2.5
86.0
79.16
1.5
88.97
87.5
87.5
88.4
14.0
80.21
74.2
3.0
87.5
2.6
87.78
86.67
87.78
87.78
87.23
87.78
87.68
87.86
87.5
87.86
87.21
87.78
87.87
72.23
76.68
4.58
2.42
2.6
3.0
0.0
0.0
55.4
81.8
78.7
38.53
39.2
46.51
61.22
54.28
80.11
65.0
60.73
21.65
15.3
62.7
79.6
34.6
40.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15.7
63.4
36.56
59.55
24.2
47.4
36.56
54.28
56.4
84.68
16.7
24.2
65.04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
39.71
0.0
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.2
0.2
0.0
0.0
0.0
0.0
17.07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
56.0
42.1
43.2
0.0
0.0
16.52
17.07
36.95
37.58
38.68
0.0
16.52
17.07
37.58
91.0
28.0
59.0
16.52
26.23
49.66
90.69
78.8
78.8
66.14
85.95
68.33
45.85
62.04
66.13
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
28.0
0.05
0.05
0.04
0.08
0.04
0.07
0.04
0.08
0.0
15.8
0.0
0.0
17.17
0.0
0.0
33.95
59.89
80.83
87.91
27.86
0.0
0.11
29.52
16.06
0.0
57.19
53.73
71.0
52.44
59.55
16.52
17.07
36.95
37.58
38.68
16.52
37.58
0.0
0.0
0.0
0.0
0.0
32.64
38.85
64.1
56.17
0.16
57.58
67.78
66.34
49.29
51.88
60.11
64.04
65.99
49.39
52.41
59.45
63.93
75.46
57.53
63.79
66.81
54.22
36.11
28.54
40.29
53.27
74.87
47.89
67.72
79.33
67.93
73.56
64.85
76.46
66.81
68.6
50.23
54.66
60.51
65.13
65.42
48.82
50.82
58.63
62.99
74.86
60.14
64.76
68.02
75.99
55.7
63.06
65.83
28.91
58.1
44.51
43.96
53.52
60.93
75.31
47.87
58.75
64.33
69.46
51.64
56.59
62.44
66.21
73.9
60.21
65.26
68.27
72.46
52.77
56.73
66.39
65.12
76.78
62.24
69.93
67.58
67.3
52.08
55.28
66.74
64.01
76.41
60.61
67.69
66.44
59.99
46.92
47.49
61.73
71.17
58.71
67.05
66.47
51.5
54.14
61.96
63.11
76.22
59.31
67.0
65.59
69.19
46.21
48.62
59.4
62.18
74.95
59.83
62.78
67.01
65.98
62.35
70.78
62.1
74.94
67.41
74.73
66.32
74.3
67.85
75.48
67.05
62.5
64.24
61.84
53.07
72.54
56.35
69.8
64.0
73.24
57.79
71.94
55.09
63.66
59.25
63.24
58.7
74.12
66.54
48.5
51.84
73.77
64.22
71.78
66.52
75.51
49.66
51.95
68.3
57.23
71.78
68.9
74.44
67.77
72.77
72.4
73.4
69.65
70.03
71.67
56.6
72.8
72.82
72.69
63.52
75.37
66.7
48.38
34.91
76.03
66.65
77.47
69.22
74.47
67.15
75.54
63.99
75.92
69.47
70.68
64.79
71.1
61.66
74.89
67.88
76.01
65.23
57.94
70.05
63.22
72.69
61.19
66.49
59.49
65.76
76.01
65.23
74.89
67.88
74.89
67.88
35.53
68.65
37.04
66.07
71.7
85.07
49.7
70.91
70.6
70.4
67.84
49.4
62.66
69.29
62.95
69.09
72.36
62.07
68.18
58.68
75.84
71.9
64.9
61.79
53.89
75.59
63.25
68.25
60.9
64.6
64.11
57.25
50.04
50.82
51.34
73.24
64.92
64.35
65.8
67.29
73.31
72.55
62.87
61.24
68.23
63.05
43.76
63.89
61.13
56.44
63.49
59.78
60.34
55.34
70.6
70.0
47.81
59.41
65.19
61.42
61.41
57.23
72.93
73.5
72.87
65.83
74.62
66.43
75.4
73.79
61.97
74.73
64.31
74.87
72.57
67.37
71.07
67.12
75.93
75.97
69.95
74.16
66.53
75.59
74.58
66.88
75.62
67.55
75.68
74.5
76.12
68.51
75.35
67.95
65.22
74.66
65.76
68.4
72.63
61.05
62.42
69.74
56.66
58.25
69.94
66.87
42.09
44.91
39.45
66.33
61.93
77.71
69.5
70.18
68.62
77.16
67.86
46.96
50.37
40.73
67.06
73.79
65.97
63.97
68.63
62.6
62.96
75.86
66.85
76.42
70.18
50.0
36.92
70.55
62.66
72.09
67.09
76.25
68.81
71.26
65.05
75.95
69.99
74.66
67.53
75.05
64.04
50.08
39.42
75.67
75.62
70.18
75.86
70.18
76.42
66.98
65.14
75.86
66.85
75.86
72.76
66.85
76.42
70.18
70.98
64.59
66.78
57.34
73.37
62.57
74.89
67.88
76.01
65.23
71.28
65.12
66.93
62.1
65.32
66.14
68.05
66.54
84.05
75.33
88.0
70.17
67.7
78.63
97.55
84.42
84.96
81.69
83.82
91.96
83.1
84.12
82.75
88.02
89.88
88.2
86.78
83.15
91.68
85.52
70.86
86.04
84.3
88.8
81.49
94.76
91.5
96.89
85.75
81.69
86.72
82.95
86.4
84.9
84.7
84.6
86.35
81.0
86.0
89.88
68.54
80.95
65.67
80.62
82.0
84.4
83.78
84.85
95.9
86.4
74.08
88.32
77.13
86.37
89.53
84.91
83.34
83.69
83.27
3.27
3.3
2.27
2.5
83.0
83.2
94.9
3.79
93.5
2.9
67.69
94.5
2.74
87.48
70.2
5.0
85.34
3.85
89.0
3.34
4.36
4.43
88.6
4.67
4.0
4.94
59.66
87.1
85.2
80.6
85.5
80.4
54.71
53.71
86.71
75.32
80.79
89.18
80.66
74.89
69.1
89.98
95.17
95.89
92.15
96.6
44.23
80.0
87.3
89.7
71.07
90.13
87.26
97.32
69.7
79.91
82.4
82.8
97.81
87.3
86.0
87.9
86.6
86.46
82.44
87.8
80.6
84.2
86.6
84.83
82.79
85.9
87.09
82.5
78.8
79.7
83.5
84.0
80.6
82.5
82.0
84.0
85.49
76.6
84.5
83.0
83.0
83.5
83.7
83.5
83.5
80.2
85.3
84.7
87.04
88.9
87.8
84.5
88.94
77.93
84.2
89.0
85.3
86.67
87.11
84.02
78.56
54.22
83.15
89.1
83.9
89.73
90.31
86.82
91.1
86.8
78.3
91.7
87.4
91.9
90.6
90.0
88.5
89.8
89.6
91.2
89.5
90.5
88.6
89.6
84.8
84.4
82.45
84.3
84.76
86.2
82.2
82.0
85.8
79.1
85.7
79.5
74.5
80.3
91.0
87.2
85.7
81.51
85.98
66.8
85.9
86.4
82.8
79.7
83.3
81.6
78.7
82.0
80.79
75.4
66.0
83.8
82.3
87.7
85.3
84.3
85.59
83.22
83.8
88.9
83.9
78.7
85.6
88.8
91.8
87.62
87.0
85.35
87.59
83.03
87.7
92.16
92.27
88.12
91.78
95.95
81.6
82.6
90.62
93.84
88.6
93.82
93.87
85.68
92.26
87.9
90.89
83.52
96.24
83.8
88.06
78.7
85.2
88.0
91.33
87.3
92.4
92.46
92.08
90.5
88.2
94.86
84.55
81.77
92.49
80.0
92.38
87.1
81.0
86.99
86.5
88.52
92.99
92.89
92.41
98.2
91.8
91.59
98.69
98.69
98.28
97.43
88.8
90.94
89.4
94.75
95.8
92.4
89.88
92.0
84.7
87.4
90.6
89.8
94.16
88.7
87.0
89.2
86.4
88.3
86.53
88.0
92.6
88.7
90.0
87.17
91.38
88.9
6.52
82.7
91.1
94.0
93.5
88.8
90.2
91.0
86.0
91.0
94.0
90.3
88.6
88.6
87.1
90.7
86.6
89.3
89.9
85.3
88.7
98.2
97.6
89.8
62.08
85.3
85.5
88.3
84.3
86.4
91.0
88.6
3.78
82.1
84.2
85.3
84.1
81.0
70.9
84.6
86.8
81.4
65.4
86.0
89.5
88.6
88.22
70.5
87.39
80.0
85.8
82.5
5.51
4.65
5.24
2.05
94.1
93.9
96.0
91.38
84.55
93.82
91.35
90.3
5.8
96.0
78.54
68.0
83.4
87.39
87.5
83.3
79.9
2.3
6.56
6.5
98.1
89.97
88.19
86.5
86.09
87.09
83.2
81.8
79.1
84.8
80.9
97.8
90.2
88.2
88.3
64.82
56.71
61.46
60.97
47.3
54.47
55.31
51.87
60.6
64.55
51.45
50.6
51.3
52.5
72.41
57.41
31.85
69.1
58.1
53.94
55.96
62.5
62.99
60.77
65.3
75.14
67.27
57.35
62.6
60.3
59.13
73.84
51.08
54.58
55.3
65.77
53.6
52.1
52.5
73.72
65.87
51.5
71.1
52.3
58.2
71.73
65.64
37.04
53.9
67.4
29.6
60.29
53.15
68.2
54.9
60.2
56.58
49.89
44.55
59.59
66.17
60.0
45.19
68.8
36.18
41.19
60.28
56.49
53.97
57.4
53.91
45.18
74.07
71.92
75.83
70.15
64.9
64.78
47.13
58.62
66.77
53.7
54.15
65.0
78.0
64.75
54.7
50.5
49.6
70.4
75.8
60.5
65.25
74.45
74.6
72.7
75.8
79.2
67.5
58.6
58.9
57.5
55.8
49.5
64.5
60.6
62.9
39.1
38.25
59.2
55.5
56.3
54.9
55.5
53.2
52.5
53.3
77.5
53.35
53.22
53.15
78.0
66.8
52.9
78.8
66.7
55.0
72.9
73.7
71.5
63.9
66.9
61.83
67.55
74.75
74.8
72.0
76.5
74.8
74.3
74.0
73.1
50.7
71.9
71.4
69.1
59.06
69.1
68.2
69.4
68.2
69.8
67.0
52.6
65.72
47.84
56.67
76.3
58.66
71.5
55.5
64.92
51.7
65.72
53.51
53.53
61.7
33.74
71.6
55.2
56.58
56.11
36.2
63.12
55.31
21.6
56.65
70.28
65.89
74.3
34.6
68.5
60.5
68.5
58.2
56.71
76.73
76.71
62.0
72.98
64.87
45.37
69.94
59.85
57.63
40.5
51.8
73.5
72.0
53.5
57.82
56.31
62.47
55.25
39.64
43.75
70.42
51.12
50.68
65.06
56.42
50.85
74.47
57.58
55.16
53.9
64.21
55.88
45.96
49.38
49.98
52.82
55.93
53.67
34.46
2.12
1.2
2.5
3.0
2.5
2.5
2.5
5.13
2.81
2.5
2.3
2.5
2.49
3.76
3.0
3.62
2.5
3.4
2.5
4.8
2.5
3.0
2.2
5.4
3.5
3.3
2.86
1.5
3.35
2.79
4.3
4.15
2.19
2.2
3.5
2.0
10.4
8.6
2.59
5.06
3.91
3.0
3.0
4.18
2.9
1.4
3.68
2.67
2.0
3.0
2.5
0.89
5.6
3.4
2.5
2.6
10.92
82.93
7.2
81.22
6.71
7.37
10.5
87.5
10.9
87.61
11.08
86.55
10.4
84.4
86.55
9.8
10.84
83.61
8.92
84.03
6.62
6.92
76.74
6.28
8.44
78.44
1.7
6.5
85.4
9.9
83.6
3.69
6.1
3.0
3.0
3.0
11.37
10.0
82.93
84.36
84.36
87.5
87.14
10.5
86.55
6.69
83.61
85.4
83.6
3.5
6.0
4.7
2.6
10.35
2.9
3.42
4.5
4.3
2.75
2.75
2.75
4.0
3.39
3.4
6.59
6.56
8.35
8.9
89.07
2.04
88.98
2.35
3.18
4.69
8.36
83.58
83.44
3.0
4.0
6.2
2.3
2.2
1.89
1.89
1.8
3.24
1.89
2.09
5.59
3.8
8.69
3.5
3.0
2.5
3.0
10.0
10.0
3.0
4.8
1.26
2.5
3.4
1.5
2.5
4.0
2.75
2.5
2.5
11.72
4.2
4.78
nan
2.5
5.0
3.0
4.4
3.5
2.5
4.0
3.0
2.0
3.0
9.37
3.48
7.37
6.87
6.77
4.43
8.45
7.06
6.8
6.82
9.38
9.8
3.0
5.05
5.0
3.1
3.0
3.0
1.88
2.76
3.59
8.5
1.1
9.69
5.9
1.9
2.2
2.4
1.5
4.4
1.2
2.53
3.59
3.31
4.07
3.78
3.85
8.69
89.51
89.15
2.29
3.0
3.3
3.0
5.0
5.1
3.0
6.2
7.5
4.3
2.5
2.23
3.0
3.65
5.9
6.98
3.0
8.39
8.6
11.56
86.2
87.11
11.41
86.4
86.51
2.5
7.47
2.3
2.2
3.0
2.0
3.5
2.5
3.5
2.5
5.2
2.2
2.2
2.19
2.31
2.75
6.0
2.7
5.19
3.0
3.5
3.0
2.5
3.5
2.5
3.0
3.5
2.5
2.5
5.0
5.0
6.3
2.48
3.21
4.3
2.5
5.3
2.75
3.0
2.59
1.8
2.6
8.45
8.8
7.39
7.94
2.37
3.0
3.0
3.0
3.0
3.5
2.2
3.5
3.6
3.0
2.9
3.4
3.59
3.5
2.65
2.5
2.29
2.9
8.5
2.8
2.2
1.79
2.79
2.2
2.7
2.2
1.7
4.4
3.0
3.1
4.03
6.3
2.2
2.4
6.4
2.09
2.0
1.89
2.5
2.75
9.02
9.04
7.52
7.47
7.8
7.57
8.1
6.59
9.09
4.8
5.67
8.5
2.75
3.5
5.69
3.0
9.19
8.5
7.59
3.0
2.29
3.0
6.3
91.41
94.3
85.56
86.67
85.47
84.63
82.36
82.28
3.0
79.36
31.76
84.13
78.76
86.85
87.16
88.24
57.0
87.9
88.22
81.98
86.35
92.36
93.43
86.62
86.3
82.56
77.56
77.66
74.33
7.5
63.6
30.89
75.56
68.45
73.3
84.87
73.23
72.33
78.81
74.91
3.0
88.15
90.9
16.6
75.06
82.21
84.21
76.78
85.8
86.59
77.4
76.26
85.9
70.65
91.38
84.17
79.39
86.13
89.93
79.62
75.66
69.73
87.2
82.25
87.05
84.95
81.56
77.61
72.66
75.53
78.94
87.13
16.0
60.65
53.2
81.96
83.95
19.21
71.5
20.53
79.8
79.11
85.21
81.26
76.33
71.39
30.05
69.8
90.76
87.44
87.7
84.37
80.4
76.43
91.5
86.15
84.24
80.26
76.64
87.87
80.1
90.89
88.06
89.31
91.56
90.48
89.58
90.76
89.85
89.67
83.59
90.1
87.38
62.0
89.3
90.0
84.29
84.51
81.3
80.54
88.84
79.53
84.51
85.4
80.8
80.66
89.56
73.46
83.13
77.86
19.7
83.07
80.85
88.98
92.31
92.46
92.39
81.6
88.26
90.79
92.52
14.8
81.76
22.3
84.61
82.75
17.6
86.73
86.2
83.46
80.94
90.15
91.85
89.82
90.26
87.68
87.59
92.3
79.99
84.34
75.28
86.75
86.34
85.97
87.14
82.3
88.3
87.72
87.22
87.22
87.22
60.57
60.57
90.07
72.5
88.64
85.17
89.51
83.06
88.9
87.0
88.06
43.33
85.02
72.93
85.62
84.21
88.87
93.13
87.49
88.2
84.72
79.28
73.19
79.2
7.5
62.04
31.8
78.1
71.38
74.73
85.64
83.96
91.81
86.47
87.3
84.46
80.35
74.28
26.69
64.44
61.2
84.01
80.32
23.01
64.4
86.0
90.82
83.51
85.73
78.99
77.71
77.1
86.37
53.1
86.6
90.81
65.28
67.3
87.23
88.35
84.02
83.0
76.06
73.0
77.93
87.55
70.67
4.0
67.99
30.92
69.73
65.08
81.24
89.1
83.8
14.97
15.43
16.57
78.04
85.75
75.33
72.75
93.61
93.51
67.79
86.58
93.0
78.0
64.87
81.16
90.95
75.35
89.97
78.05
73.18
73.23
31.4
76.78
91.45
57.27
83.28
88.25
80.4
75.72
70.63
83.51
77.56
88.31
77.61
80.62
80.35
76.06
89.51
88.24
88.22
79.58
84.87
90.0
85.64
84.01
86.37
57.0
87.9
84.14
84.24
83.18
83.31
75.28
21.32
64.99
30.0
16.7
79.9
71.4
87.24
85.66
84.6
85.02
86.58
84.72
83.51
86.63
84.97
83.43
86.26
83.16
85.95
87.05
86.44
83.22
36.08
49.04
74.85
80.64
93.05
88.97
87.24
85.33
85.81
85.46
85.76
84.16
87.22
83.46
85.1
87.06
81.7
84.51
85.64
88.0
86.0
86.0
87.92
85.75
28.28
49.83
73.17
65.99
7.69
36.74
24.76
26.26
62.47
55.04
72.9
60.66
68.64
61.92
74.78
65.75
67.69
60.37
74.88
65.28
66.92
58.27
57.87
57.51
72.23
61.4
60.72
61.02
67.64
57.32
61.45
58.74
72.84
60.32
65.03
62.24
69.7
58.04
62.27
60.26
73.62
61.79
65.01
63.65
67.83
56.85
61.66
57.76
72.4
61.56
65.14
61.44
70.29
58.88
60.58
59.34
73.98
62.16
64.61
61.74
76.0
69.45
70.38
62.44
62.92
63.76
72.93
65.14
65.11
65.6
64.02
54.8
72.63
60.64
68.34
60.03
52.04
75.51
63.59
60.27
69.18
54.95
57.25
57.47
74.31
58.0
60.07
60.94
59.75
40.42
62.53
72.38
78.36
75.88
76.11
67.87
61.25
72.65
64.99
76.21
68.08
22.19
80.06
68.7
4.09
71.06
64.32
79.52
80.0
56.87
67.18
60.3
78.43
66.7
73.5
61.13
65.9
56.9
44.24
47.41
26.93
72.31
61.7
75.0
67.67
64.54
73.52
69.45
60.93
55.93
63.46
54.4
72.24
59.71
68.26
65.78
65.82
65.07
65.15
11.0
31.06
28.89
54.73
63.86
59.13
56.18
62.85
46.05
46.7
62.17
61.14
58.01
58.39
57.11
64.81
66.92
65.75
71.12
66.52
62.62
65.11
58.53
59.42
63.47
54.82
66.15
58.15
53.37
56.34
57.33
71.98
62.25
56.95
60.86
60.61
68.22
53.9
48.38
72.84
56.16
58.72
73.16
65.78
65.98
62.82
74.3
66.41
66.75
64.07
74.97
61.06
52.75
61.09
69.11
62.3
70.14
73.28
69.13
59.43
72.23
60.3
71.8
57.08
72.42
64.46
74.25
71.9
74.44
73.53
69.17
71.35
72.95
64.49
62.52
12.52
20.38
23.65
70.72
0.25
70.92
77.03
69.97
68.58
70.21
71.2
72.11
73.05
67.9
66.98
65.87
69.47
69.53
72.06
72.58
73.95
69.23
71.1
71.71
72.85
76.53
76.75
74.32
75.54
73.97
70.8
70.5
70.29
72.46
35.47
35.65
68.02
65.33
72.68
70.62
67.16
65.04
63.86
72.96
71.07
61.56
67.5
72.85
69.88
69.21
69.49
67.23
63.43
65.48
71.32
71.72
64.6
60.03
67.21
71.14
72.11
64.38
62.94
63.36
70.93
68.53
71.62
63.82
67.68
69.56
67.46
69.79
63.67
65.23
62.57
69.97
66.09
48.11
38.32
73.07
76.91
59.2
74.85
63.06
73.53
68.65
60.71
76.1
72.64
70.36
56.13
65.19
68.72
75.18
74.37
67.26
68.7
74.57
66.99
75.88
64.67
73.62
41.67
51.35
61.03
43.85
51.97
60.08
68.57
57.58
72.94
64.76
65.0
59.98
59.98
58.72
62.14
69.7
62.69
57.45
56.32
54.61
45.01
62.65
92.82
91.69
91.49
72.48
77.08
84.94
84.08
88.59
86.5
93.22
92.63
94.32
93.98
91.82
94.1
89.25
88.69
94.03
93.95
91.0
95.92
94.32
90.7
89.3
70.24
67.17
81.17
72.05
72.98
65.46
72.35
90.4
93.39
84.3
79.15
76.02
55.8
58.01
90.69
90.32
89.22
95.06
93.38
94.3
89.93
91.42
89.93
90.04
87.58
87.06
91.3
90.96
91.02
89.13
81.0
83.7
89.3
89.25
91.46
90.72
90.55
90.72
92.55
91.41
86.0
88.9
87.07
86.74
80.09
75.64
94.5
96.7
97.92
92.18
92.57
90.39
90.84
91.0
92.0
95.32
95.55
94.39
95.24
94.0
93.46
88.29
90.17
92.99
92.95
90.04
90.32
59.68
92.07
93.0
92.51
94.0
88.0
92.3
95.43
94.11
94.5
92.66
92.65
94.24
93.43
94.52
92.0
80.0
90.65
91.4
92.49
89.62
90.18
89.53
88.47
92.21
76.05
73.41
82.61
80.38
78.73
76.58
82.8
75.0
77.03
71.79
73.2
68.4
77.5
92.8
77.2
75.48
64.15
66.1
86.0
89.5
87.85
87.47
89.78
91.3
89.4
92.5
95.23
96.73
85.6
89.8
92.3
89.67
75.17
72.77
93.79
58.58
78.89
95.54
95.32
93.85
84.29
78.66
81.65
87.87
86.9
78.01
92.59
11.14
87.72
87.15
84.04
91.2
91.12
90.5
19.97
89.74
89.85
89.61
91.0
90.3
90.66
84.3
88.9
83.0
90.8
67.34
68.7
95.63
94.61
95.64
94.98
79.1
81.42
95.64
81.44
77.14
92.45
91.08
91.1
91.08
92.82
92.12
87.74
9.5
83.48
90.7
91.78
93.21
93.8
92.2
94.5
94.0
94.8
89.58
92.57
90.82
91.12
89.11
87.86
3.93
94.1
80.01
91.99
92.24
90.22
92.24
89.83
92.32
90.5
91.24
51.22
46.37
87.71
79.53
80.24
88.89
88.91
89.3
86.6
78.86
77.87
85.13
82.29
86.51
81.89
79.98
79.52
62.27
74.37
88.15
84.36
85.8
86.4
81.5
88.18
92.5
93.89
91.87
91.25
93.96
94.7
82.65
65.88
71.8
71.64
91.6
92.9
79.34
78.58
81.58
80.96
74.45
75.43
76.67
67.11
63.07
68.08
83.29
75.42
47.31
76.98
77.8
77.46
73.55
63.5
47.25
75.25
80.94
74.0
87.83
84.28
6.58
81.2
3.63
77.49
6.3
76.01
4.97
78.98
6.22
79.17
78.85
55.95
72.51
63.71
64.51
56.62
79.97
61.96
62.8
59.65
79.3
82.8
66.61
64.44
66.82
52.9
49.94
35.4
68.3
69.29
64.85
6.52
76.0
95.15
95.2
92.88
92.51
91.6
93.69
89.97
71.49
92.86
93.52
95.27
94.62
95.04
19.68
89.43
91.54
77.0
81.0
92.52
91.32
81.34
81.58
85.03
91.58
93.3
67.5
68.6
69.05
79.45
67.2
91.4
91.21
93.22
91.78
90.17
88.94
94.28
94.25
96.04
93.66
92.24
94.18
95.0
94.79
95.22
94.7
94.74
90.61
87.78
82.9
89.7
86.41
87.8
82.5
87.8
88.0
85.1
91.1
91.6
92.3
73.1
68.37
78.17
81.96
74.11
74.1
92.47
92.93
86.81
89.2
77.28
75.78
80.13
76.03
73.88
74.89
73.7
70.64
63.8
85.66
92.15
95.82
95.3
87.96
86.46
93.0
94.52
94.34
94.75
91.54
94.23
94.24
73.5
87.88
3.06
91.28
87.97
86.09
83.43
88.28
89.09
88.6
91.87
93.6
95.67
93.6
89.67
93.2
94.69
92.93
90.4
93.13
91.04
94.09
90.24
87.01
82.08
83.23
94.13
93.1
73.46
86.42
95.11
96.1
96.06
87.04
90.11
76.85
57.4
69.6
70.13
90.07
90.07
80.16
81.88
93.0
91.88
2.0
93.0
93.6
60.0
88.2
88.42
87.0
91.2
2.0
2.0
96.1
88.89
2.0
95.37
2.0
94.64
93.7
89.76
89.21
77.39
72.47
89.08
81.3
93.39
88.87
72.33
78.48
70.73
62.75
80.63
8.68
90.67
4.68
79.99
87.74
79.6
47.77
74.89
72.04
90.07
79.8
4.0
89.44
94.78
95.28
80.75
91.4
91.49
77.08
84.08
86.5
92.63
94.32
94.1
88.69
93.95
95.92
89.3
67.17
81.17
72.35
72.98
93.39
76.02
58.01
93.39
90.27
89.22
89.22
89.22
94.68
94.68
94.68
93.38
89.88
91.42
91.42
91.42
87.06
91.62
89.13
91.88
83.7
90.69
90.69
90.69
89.25
90.72
90.72
88.9
86.74
75.64
96.7
92.52
92.52
92.57
90.84
92.0
95.55
95.24
93.46
90.17
92.99
92.95
90.32
93.0
94.0
92.3
94.11
92.65
93.43
92.49
90.18
88.47
73.41
82.61
78.73
76.58
77.03
73.2
75.48
66.1
89.5
91.3
92.5
89.8
89.67
95.32
84.29
81.65
88.42
86.9
87.15
91.2
90.5
91.2
90.3
88.9
90.8
81.42
91.08
83.48
91.78
93.8
94.5
94.8
92.57
91.12
87.86
92.24
92.24
80.24
88.91
86.6
77.87
85.92
81.7
79.52
74.37
88.15
85.8
88.18
88.02
92.5
92.21
91.87
91.87
91.87
94.7
71.8
92.9
74.89
75.42
47.31
76.98
77.8
77.46
72.04
73.55
63.5
82.8
52.9
61.51
66.61
74.0
80.94
93.69
89.97
95.2
92.51
93.52
95.04
91.54
81.0
68.6
91.21
93.22
88.94
93.7
94.25
92.24
95.0
95.22
94.74
89.21
82.9
89.7
87.8
87.8
85.1
91.1
92.3
68.37
74.1
92.93
89.2
75.78
80.13
73.7
63.8
92.15
95.3
86.46
94.34
94.75
94.24
73.5
87.88
93.6
93.6
93.2
90.4
91.04
83.23
96.06
90.11
70.13
90.07
87.47
75.96
72.84
72.84
81.34
81.34
80.38
78.24
78.73
76.58
76.58
75.0
76.73
76.73
71.79
73.2
73.2
91.25
93.96
94.7
94.7
78.95
93.3
79.45
67.2
93.6
68.7
77.14
88.6
77.48
76.3
2.0
93.3
93.3
75.61
68.51
94.34
90.66
76.2
94.08
93.1
71.65
62.07
94.08
94.34
65.26
68.51
88.34
92.02
93.14
92.73
91.63
14.56
53.83
90.21
61.12
91.71
90.35
90.2
7.15
94.12
94.31
89.79
89.47
89.47
93.54
96.33
70.58
72.6
73.32
76.1
91.81
90.25
22.63
91.69
93.25
91.51
14.84
68.9
89.21
70.78
92.5
89.18
14.8
89.88
69.11
73.06
88.52
90.37
88.68
88.91
92.82
56.27
59.3
45.0
6.5
5.8
6.3
6.9
1.2
14.16
5.23
2.03
5.62
6.41
4.69
3.3
5.0
6.61
7.1
5.0
4.73
1.2
1.54
1.0
0.62
7.47
27.9
5.06
6.0
4.41
4.51
2.41
2.8
14.08
6.6
3.42
3.34
1.7
3.48
5.2
2.96
43.95
8.9
61.57
40.2
48.65
52.0
9.45
9.0
68.15
46.99
3.0
15.46
23.27
1.0
53.9
28.97
67.62
72.88
94.99
5.31
5.79
2.52
55.2
12.4
72.95
2.65
1.36
1.61
1.75
2.08
3.15
2.5
3.52
1.12
1.13
2.77
2.28
5.9
3.91
1.85
4.56
4.07
6.28
49.7
4.65
4.5
3.05
40.48
1.6
0.9
3.0
5.05
9.96
71.42
1.67
12.55
6.1
1.64
3.0
2.0
3.75
61.41
86.03
49.9
77.0
1.7
6.96
2.03
5.0
1.2
1.2
1.54
1.0
0.62
2.41
2.8
2.8
1.7
2.34
2.34
1.61
1.75
2.08
3.15
1.12
1.13
1.79
4.5
2.8
1.64
3.0
2.08
3.15
73.42
57.26
58.21
20.21
18.58
70.29
67.13
53.39
69.46
54.95
63.33
68.72
57.27
64.06
58.03
55.87
68.7
61.3
48.29
35.72
69.38
50.15
60.5
62.44
58.42
61.19
73.03
58.21
69.56
60.31
69.97
60.6
71.33
58.22
71.41
70.82
53.91
76.29
70.75
74.86
77.11
65.67
77.89
66.88
70.81
58.81
62.01
79.38
76.4
59.39
65.2
55.6
77.2
69.98
4.0
67.8
52.83
64.53
57.87
84.16
56.0
59.18
45.2
26.2
66.56
59.79
57.72
53.8
59.72
58.83
74.6
61.06
69.53
69.19
53.56
68.93
68.24
58.1
53.93
53.22
54.84
59.33
58.83
60.05
51.54
57.71
58.9
59.55
46.05
55.7
51.9
53.44
58.83
61.2
51.93
53.39
54.8
57.85
58.79
46.1
49.53
57.9
56.8
59.3
57.52
51.08
52.79
62.59
58.7
60.3
57.33
64.46
56.74
63.54
57.92
65.37
58.09
65.37
57.36
64.83
58.82
65.9
65.05
64.5
65.92
65.35
64.83
66.2
64.67
63.8
65.54
66.75
65.62
67.88
57.9
57.31
58.49
58.1
59.3
60.38
59.78
61.29
60.76
60.21
61.58
59.98
58.83
61.71
61.74
60.74
63.25
60.33
59.68
60.97
62.98
62.38
63.58
54.66
53.95
55.69
70.32
61.05
60.38
59.13
71.46
62.16
62.19
57.78
56.97
58.97
70.73
61.15
62.5
71.86
61.98
63.73
59.92
72.01
71.4
72.62
63.87
64.28
64.37
65.87
55.78
58.37
59.36
55.85
54.3
70.62
62.11
61.73
62.67
72.42
71.79
73.35
72.7
72.21
73.43
61.04
73.17
72.95
73.51
60.31
68.8
68.26
69.61
62.02
52.77
61.34
52.03
63.03
53.73
59.75
52.87
61.08
49.58
59.07
52.48
59.96
48.3
62.33
50.45
61.78
49.35
62.88
51.56
61.23
47.67
59.93
46.32
62.83
49.4
64.79
63.88
66.16
55.24
48.47
48.12
53.85
47.33
46.87
57.48
50.41
49.9
51.51
44.87
43.4
54.51
48.74
47.73
53.0
45.96
45.9
56.35
50.25
49.4
50.4
43.48
44.49
61.05
53.65
48.97
60.11
52.93
47.18
62.0
54.36
50.84
53.22
47.36
41.82
62.15
71.89
65.44
56.73
66.62
58.49
66.88
54.97
61.6
66.32
54.27
61.09
67.44
55.67
62.1
69.31
61.97
68.57
61.36
70.06
62.58
66.1
61.56
65.43
60.92
66.86
62.31
71.12
54.18
69.04
54.68
59.59
68.8
53.83
58.46
52.36
69.29
55.63
60.72
68.73
59.51
73.04
69.89
64.12
54.76
63.43
53.91
63.43
56.48
61.49
54.99
63.95
57.96
58.42
51.34
61.52
56.04
48.37
61.69
55.53
47.99
61.33
56.5
48.86
59.52
51.84
48.28
66.09
58.36
64.87
56.81
49.56
67.32
59.92
64.39
64.21
64.21
65.24
64.17
65.01
59.38
59.16
57.52
70.08
61.82
69.37
63.45
70.73
64.68
65.59
67.26
61.63
64.32
64.09
65.58
70.73
71.99
72.48
72.16
72.96
69.47
61.77
59.17
55.94
58.71
57.05
70.52
64.67
91.96
92.77
95.3
94.88
95.0
74.6
69.74
95.4
54.9
91.8
64.99
78.8
88.45
98.35
0.6
69.15
98.35
76.9
78.2
72.44
88.45
98.75
6.61
28.3
2.83
88.8
66.6
96.18
71.1
97.21
86.15
88.33
85.69
1.99
62.1
66.6
66.6
63.9
88.43
6.05
70.51
0.86
84.5
84.52
99.11
76.2
7.4
94.19
87.49
3.44
4.13
3.95
99.93
99.95
99.9
98.36
98.87
99.95
100.0
95.41
86.89
1.28
99.95
86.95
86.58
87.2
86.5
86.7
95.03
86.49
86.56
86.59
86.94
86.53
86.29
85.71
86.22
86.38
86.86
87.02
86.17
87.88
86.98
89.9
86.78
86.98
92.34
87.28
99.9
87.03
79.4
86.54
86.7
86.56
87.16
77.76
91.23
91.18
87.14
85.69
88.8
99.8
89.49
89.78
99.74
89.62
89.62
94.78
87.6
99.8
85.62
89.4
88.45
91.1
98.35
89.3
87.49
85.81
86.85
99.8
2.9
84.32
80.79
31.0
80.51
87.4
1.5
86.34
4.18
3.4
3.73
99.3
97.8
3.1
3.1
99.39
97.8
3.1
99.09
3.2
98.93
4.1
98.94
1.7
7.99
98.37
83.78
83.5
85.6
86.17
95.2
79.16
57.4
87.83
87.97
87.97
58.2
88.15
84.2
85.3
1.43
96.26
49.06
89.35
0.52
92.87
86.08
91.15
1.43
81.49
2.0
81.4
1.28
81.26
1.3
81.34
87.47
86.7
87.9
86.9
69.65
0.4
80.9
99.7
5.09
99.7
3.5
0.13
5.09
99.62
4.3
0.13
91.18
3.5
99.41
99.7
99.9
100.0
92.38
90.31
55.5
89.15
0.14
87.15
1.8
99.9
99.9
31.0
46.5
99.54
87.0
12.8
92.26
55.2
87.18
59.2
88.08
74.1
99.9
48.4
88.08
99.98
99.97
99.96
85.4
100.0
100.0
100.0
99.97
2.51
93.38
91.91
98.78
90.15
91.06
78.2
72.6
60.3
57.5
41.4
72.53
99.8
3.4
90.35
50.09
88.88
99.7
99.7
0.3
63.9
62.1
89.2
98.2
99.98
1.1
80.93
99.97
99.89
99.79
86.59
99.85
94.44
98.7
98.8
98.8
98.8
92.2
91.8
91.9
91.6
91.9
92.2
92.2
92.4
92.4
87.8
87.9
88.0
88.4
87.3
87.3
88.45
98.35
87.08
98.35
4.89
77.79
98.78
82.32
88.4
87.58
94.44
87.1
89.28
86.73
98.35
97.94
83.87
93.2
93.0
86.39
89.63
88.1
8.3
73.37
50.3
75.66
79.22
70.86
79.26
74.13
76.31
69.63
80.36
58.81
47.5
78.93
69.8
81.22
75.92
75.61
16.14
83.95
78.03
59.76
76.35
77.55
77.33
68.26
59.31
49.5
84.63
81.11
80.35
79.22
73.36
83.38
79.65
71.48
80.34
76.12
70.27
72.05
64.16
55.22
59.7
71.52
79.63
81.03
63.55
53.27
69.17
75.85
70.15
71.67
68.46
70.85
83.24
77.01
70.52
83.07
74.24
81.36
79.13
73.25
78.92
72.97
79.31
78.18
86.75
73.65
71.12
62.97
79.08
74.67
67.73
75.67
71.02
60.14
68.5
72.0
71.64
75.38
70.77
72.66
65.39
75.52
74.04
73.15
68.0
68.07
59.61
66.86
75.37
78.27
72.14
78.09
68.19
73.58
60.09
77.97
69.04
78.77
72.79
76.87
70.35
75.95
76.55
69.94
62.5
79.71
79.5
76.34
73.38
68.26
78.9
70.24
71.42
71.87
70.5
68.09
59.09
59.83
78.14
70.58
64.02
73.19
74.03
63.16
76.95
72.77
70.83
80.27
74.71
79.9
74.52
79.57
77.55
74.66
79.02
79.69
79.69
71.0
79.18
80.58
82.24
79.37
80.95
78.11
83.01
52.86
71.56
75.85
74.91
74.07
74.56
60.1
78.98
61.55
63.64
65.26
97.7
80.56
80.58
61.15
80.25
89.04
64.72
78.19
85.14
82.06
82.53
58.44
73.82
78.55
64.54
66.0
32.0
72.0
70.77
70.03
68.72
59.83
75.21
64.02
74.02
68.79
73.36
62.64
73.41
66.83
80.31
69.68
71.22
70.94
61.88
63.49
73.88
75.68
69.04
61.73
62.63
78.51
73.47
72.03
76.1
58.63
62.85
59.62
65.6
68.44
70.65
68.42
71.91
59.22
69.17
73.99
73.72
63.36
62.28
68.98
70.45
65.09
74.23
67.33
73.31
75.1
66.76
61.12
60.5
64.12
66.97
77.67
79.06
74.65
64.89
64.75
70.47
67.0
73.8
68.72
84.05
80.8
82.98
86.2
81.95
71.5
69.4
60.38
64.57
71.07
70.71
78.08
71.59
67.78
70.63
81.99
79.34
81.86
78.37
78.45
74.33
71.86
69.51
75.67
13.44
66.29
40.58
35.45
65.17
72.0
71.33
69.34
71.46
71.48
73.5
11.02
65.74
11.0
65.74
75.64
12.39
64.65
77.56
10.77
66.57
10.7
69.0
69.89
11.75
66.94
78.04
11.75
66.93
11.75
66.94
77.96
11.9
66.99
12.1
63.81
70.45
10.06
61.2
11.33
62.95
78.19
11.71
63.24
11.1
62.98
11.32
63.08
70.1
10.98
71.54
80.32
3.58
7.68
60.21
78.55
75.51
11.05
69.7
11.95
70.04
79.63
77.59
9.38
69.13
8.26
69.64
10.17
69.79
77.08
12.07
67.15
10.44
71.08
9.68
69.23
9.05
72.66
13.42
10.8
72.51
8.62
69.49
6.5
41.78
1.45
1.81
6.39
1.78
4.26
2.12
6.91
2.17
1.14
1.23
7.8
7.8
10.59
68.55
77.75
48.98
7.48
50.4
8.54
62.55
1.95
0.8
43.02
55.02
59.65
5.16
3.81
7.25
4.61
6.94
88.05
5.8
4.98
71.15
66.0
68.02
84.95
87.26
5.78
50.52
81.64
70.01
8.43
68.8
8.34
67.19
64.87
34.62
90.36
7.82
68.11
70.6
61.21
1.93
1.2
1.47
1.48
10.28
66.59
81.28
71.12
89.0
87.4
88.1
91.4
90.9
85.61
1.55
85.61
78.39
78.69
70.71
59.56
69.4
73.7
82.7
82.2
82.4
87.1
77.0
80.9
83.4
90.5
90.27
89.76
92.74
93.14
90.98
92.69
88.38
92.03
89.89
92.67
88.38
91.53
91.32
86.39
92.77
91.95
87.63
91.13
90.92
89.69
93.18
87.41
82.96
87.62
86.8
85.56
80.7
79.35
84.67
77.0
77.59
76.41
78.18
78.18
77.59
78.18
86.29
72.95
72.95
85.8
89.8
81.8
84.5
77.3
82.5
84.0
91.4
88.08
82.87
66.29
65.74
75.64
65.74
64.65
66.57
69.0
69.89
66.94
66.93
66.94
68.86
66.99
77.96
63.81
61.2
62.95
70.0
63.24
78.19
62.98
63.08
71.54
60.21
66.72
66.87
78.55
69.7
70.04
69.13
69.64
69.79
67.15
71.08
69.23
72.66
72.51
69.49
1.45
1.81
1.78
2.12
2.17
1.14
1.23
0.99
68.55
77.75
62.55
1.95
5.16
3.81
4.61
2.7
6.94
5.8
5.8
4.98
4.98
75.14
63.33
69.83
84.55
5.78
50.52
70.01
68.8
67.19
60.0
65.6
69.1
70.9
72.0
64.8
70.0
61.2
72.8
74.1
79.0
71.1
76.4
73.0
66.69
73.4
62.4
62.1
73.0
71.8
70.7
70.4
59.1
68.0
54.1
61.7
56.8
67.5
54.4
53.7
57.5
41.9
62.1
54.1
41.9
64.0
55.6
54.3
64.8
66.8
62.8
49.3
50.9
54.0
46.9
47.4
47.4
62.0
65.5
61.9
71.4
65.5
65.5
66.0
49.8
70.8
66.0
60.5
54.3
62.6
59.8
75.0
70.9
55.6
79.7
42.5
73.1
70.8
64.0
42.9
74.4
56.4
48.8
54.0
55.4
58.1
50.4
71.26
60.7
53.72
73.42
61.96
22.54
26.14
67.01
56.8
74.86
61.79
64.32
57.48
74.11
63.89
67.17
60.66
74.44
64.92
60.3
54.13
73.57
62.49
56.55
51.57
52.5
72.55
60.98
62.76
50.8
47.06
47.89
70.44
58.83
60.13
61.39
45.2
55.03
56.26
72.99
49.96
61.38
63.32
61.76
44.22
54.69
55.92
74.14
49.32
62.28
64.32
61.9
45.18
55.92
55.85
72.36
49.64
62.46
62.82
73.74
56.23
63.53
59.8
51.15
73.78
59.95
25.56
26.12
68.69
55.58
74.49
59.33
66.75
57.87
74.35
63.92
56.89
50.44
71.4
60.86
62.78
59.66
70.24
64.96
61.07
42.64
72.51
47.86
72.84
57.08
75.91
60.16
24.77
21.65
74.8
55.49
51.31
58.34
66.1
75.82
56.18
53.14
60.68
67.01
69.44
52.02
60.73
74.79
56.96
64.59
71.15
53.33
59.91
75.18
56.08
64.64
74.78
56.4
65.31
76.58
58.88
66.66
74.05
55.28
64.68
76.64
58.2
66.47
72.6
56.98
65.54
76.29
59.24
66.9
71.85
54.49
62.66
75.94
58.55
65.74
76.39
59.29
66.16
66.76
74.08
65.9
71.2
53.55
65.09
71.59
70.97
57.92
70.89
61.7
38.1
65.35
74.57
66.54
72.54
63.87
76.3
68.81
71.45
62.43
73.57
65.23
74.38
66.28
75.84
68.21
72.63
63.98
75.55
67.83
69.35
55.58
58.3
72.82
60.61
58.82
74.51
61.37
54.3
73.83
62.07
79.2
75.73
60.71
79.78
76.89
68.56
76.71
64.2
77.69
62.18
79.23
70.45
79.07
67.67
71.37
56.67
56.2
70.89
59.86
59.87
79.7
75.83
80.5
77.59
58.68
73.77
59.65
70.6
55.7
78.15
66.38
78.15
71.25
79.16
73.63
66.6
57.86
74.53
64.08
59.47
55.09
63.17
55.82
67.01
56.8
66.38
58.99
68.73
61.43
61.32
54.85
59.55
53.31
54.33
53.68
49.03
49.59
63.36
45.46
56.7
56.98
63.3
44.92
55.77
57.07
63.39
45.65
57.01
56.95
64.03
54.8
66.02
56.76
67.05
59.01
59.95
52.17
56.61
52.47
62.0
43.73
74.4
74.0
75.4
36.15
67.67
55.95
54.77
57.36
59.72
76.92
61.74
77.45
62.98
64.93
58.71
73.22
63.75
25.08
24.0
68.31
60.47
75.13
66.93
66.33
59.65
73.98
64.54
67.64
60.82
74.08
65.3
62.63
56.2
73.68
62.18
66.86
59.95
74.13
64.08
68.46
61.99
73.45
64.85
66.8
62.0
72.17
64.45
59.01
57.53
71.17
63.78
62.7
55.31
72.39
61.05
63.82
51.03
73.95
56.98
62.13
56.63
71.62
62.25
64.25
59.53
65.1
60.48
75.5
64.48
65.08
73.95
68.84
64.14
64.5
65.43
64.93
71.15
64.23
67.07
59.78
67.2
66.1
74.7
72.57
75.38
73.25
61.46
29.57
25.36
19.17
73.11
78.52
54.77
71.69
70.59
21.77
74.58
75.07
60.09
69.49
81.02
64.6
70.8
66.59
69.29
66.65
77.84
72.6
85.78
73.96
85.01
58.74
66.5
68.14
74.43
55.36
71.98
66.43
74.35
68.3
73.5
66.69
74.54
60.93
74.49
72.43
54.64
64.22
72.9
66.7
71.67
60.21
64.96
67.56
47.82
54.39
56.87
67.84
63.15
50.12
58.22
60.04
66.64
74.37
51.28
64.7
56.45
62.47
50.14
61.18
55.93
66.31
64.76
69.53
63.79
74.43
74.04
59.87
65.32
75.2
64.65
77.96
63.28
66.44
38.19
32.69
44.47
35.99
75.85
61.3
61.41
62.96
33.81
28.27
32.7
32.0
26.9
32.9
26.7
9.2
28.9
37.76
27.7
33.15
29.69
28.9
37.8
29.2
47.2
7.8
27.11
39.1
35.8
34.7
28.3
33.0
20.61
30.1
35.7
36.94
31.46
44.0
38.5
36.7
31.2
32.1
30.6
40.0
37.9
31.8
33.6
27.8
46.0
35.7
44.0
46.0
39.6
42.9
41.0
37.3
31.0
35.2
24.23
37.8
37.1
36.42
30.4
34.8
35.3
39.01
24.25
32.7
26.0
6.51
6.1
4.2
64.8
4.6
64.9
33.2
3.73
32.9
45.4
3.6
46.1
22.04
3.9
24.4
20.7
32.2
21.9
29.1
31.7
3.3
30.5
25.3
6.94
4.4
28.0
3.1
32.3
25.87
23.1
28.4
18.57
19.6
6.0
29.7
29.4
3.5
23.3
22.38
22.1
4.0
7.18
25.1
45.6
44.2
3.9
13.6
2.8
12.6
4.6
11.8
4.5
7.36
3.57
9.88
3.0
12.08
3.0
5.7
3.11
2.0
1.65
16.5
8.0
5.3
3.39
2.0
19.5
10.1
5.8
5.7
11.0
5.3
15.3
5.8
6.4
7.28
11.5
12.6
4.0
5.9
2.8
13.1
3.6
3.3
3.5
5.1
4.2
6.5
3.7
4.4
6.29
14.08
5.0
8.9
1.66
2.2
7.4
5.1
4.2
3.55
3.28
6.1
4.3
6.4
4.8
5.1
4.9
5.5
4.7
5.5
3.8
5.0
4.0
5.05
3.14
3.9
2.93
2.75
3.2
3.4
2.94
7.6
40.5
23.2
45.6
21.0
5.5
3.6
24.3
31.4
27.1
20.4
20.82
16.76
19.6
16.3
17.9
38.2
22.0
35.6
43.56
32.97
40.2
35.0
40.6
32.07
42.3
37.2
45.7
41.0
52.6
54.7
29.0
5.3
3.0
37.7
24.96
30.18
30.8
39.5
32.6
30.5
23.6
33.0
35.0
4.8
48.37
9.05
53.0
9.1
52.9
52.9
53.2
9.1
10.8
8.8
52.8
52.2
47.3
50.9
47.9
52.5
51.2
46.2
45.8
33.92
49.7
43.2
49.7
49.2
60.9
37.6
41.7
43.3
37.4
54.4
18.25
19.5
50.39
58.5
47.0
7.6
10.6
17.82
7.18
9.8
8.5
32.6
11.7
28.44
30.4
44.0
30.1
37.0
33.1
34.8
34.18
38.0
46.0
31.0
43.5
29.4
24.8
28.9
22.7
6.4
14.09
14.33
45.89
32.43
37.95
42.0
28.8
5.0
4.0
6.2
0.2
1.7
69.0
5.08
6.35
6.2
5.7
34.0
35.9
29.3
26.4
27.0
52.5
29.1
6.1
7.2
8.5
19.7
30.59
32.6
32.6
32.6
7.8
32.1
33.6
36.7
21.9
23.1
3.5
3.7
4.6
4.1
19.5
5.1
4.03
4.1
3.5
3.1
2.7
24.3
27.1
30.4
27.1
3.1
27.1
25.4
42.1
42.1
42.1
52.2
37.6
37.6
21.0
11.7
6.0
44.1
26.8
31.0
3.1
3.4
12.04
12.5
12.5
10.5
11.3
12.5
12.75
12.5
12.5
12.5
12.75
12.75
12.75
12.75
45.6
14.5
41.8
47.66
46.06
5.0
5.01
11.5
13.49
9.32
12.03
10.34
9.99
11.43
10.28
11.53
10.41
3.0
6.35
14.99
14.99
5.22
6.4
5.3
4.0
3.1
4.1
5.7
3.0
4.0
10.0
33.6
3.6
1.57
3.12
39.89
12.78
38.82
3.1
36.12
35.5
27.86
3.2
42.6
47.3
34.2
4.2
17.65
4.81
10.62
10.51
40.34
31.57
36.48
34.95
43.8
14.04
10.46
39.94
4.37
4.99
41.09
17.78
7.96
8.26
19.25
2.59
2.73
35.62
3.32
25.48
22.38
21.54
12.99
21.29
7.12
27.26
5.93
4.45
4.48
31.78
18.98
7.3
9.85
39.6
37.55
38.64
32.43
33.55
21.13
45.91
3.0
2.5
3.0
2.3
49.5
3.0
47.7
2.5
3.0
2.7
2.0
2.7
2.7
2.7
2.7
2.7
2.7
2.0
2.2
7.5
8.0
42.9
43.3
42.44
44.99
35.29
23.36
1.07
1.2
2.0
2.0
1.57
1.3
7.0
12.3
10.2
3.9
3.1
2.4
6.4
7.3
6.4
3.6
3.2
5.9
2.55
2.64
3.32
1.2
5.0
3.3
2.8
2.5
1.8
2.6
1.8
2.22
2.0
3.13
2.5
1.67
3.9
5.8
5.9
5.9
2.64
1.66
3.14
9.2
9.0
6.6
1.6
6.69
8.2
15.0
8.3
1.23
5.25
1.54
8.5
6.79
6.69
0.9
1.34
1.91
0.7
0.5
7.7
nan
0.75
2.67
1.3
59.85
57.2
59.8
9.03
15.0
0.94
68.05
61.0
69.6
66.1
2.3
6.74
9.81
7.66
10.93
10.85
7.99
1.9
1.0
1.3
6.3
1.63
1.17
6.99
nan
24.0
61.43
4.5
16.4
3.67
2.3
2.9
1.5
74.52
75.9
74.59
1.59
1.07
1.9
11.2
54.9
37.98
nan
1.5
1.52
6.3
1.57
33.0
13.47
1.27
2.48
1.7
9.05
0.45
6.1
0.65
1.5
1.6
0.7
6.4
1.44
1.0
4.6
6.3
2.2
5.55
8.51
1.19
5.8
4.23
1.82
3.04
2.6
0.9
3.0
2.7
78.86
1.7
73.45
nan
1.0
84.39
1.93
94.74
13.0
9.09
62.94
69.46
3.2
73.6
62.91
7.8
4.0
73.13
73.94
74.4
75.15
4.8
72.42
4.0
73.97
71.66
2.6
73.5
74.16
74.44
3.9
74.49
73.43
75.01
75.86
80.39
82.11
10.36
93.2
71.84
75.6
1.0
79.29
0.4
80.98
6.5
17.0
21.0
15.1
15.07
75.71
74.63
76.93
76.25
76.23
1.19
1.65
1.5
0.6
13.33
0.86
0.7
1.9
35.2
1.26
1.6
1.1
4.1
1.61
1.66
6.99
6.99
65.52
78.3
62.99
1.47
10.2
55.7
60.0
14.7
14.6
10.2
2.42
66.9
86.4
80.49
1.7
65.3
56.45
2.99
17.1
30.47
29.77
7.12
5.45
33.2
21.87
5.78
5.78
5.3
8.7
8.7
73.4
8.51
71.23
10.89
2.8
73.62
4.1
74.96
2.2
73.4
3.7
74.6
0.7
2.9
1.9
0.7
73.2
5.2
73.62
1.34
0.02
0.23
8.75
8.0
62.16
21.8
22.01
22.81
24.0
21.1
32.39
22.7
4.47
30.1
30.1
15.6
3.83
32.0
19.8
33.0
14.69
3.83
3.83
3.83
12.18
14.07
15.27
7.82
4.85
0.55
9.16
73.3
63.8
4.3
1.6
6.7
6.45
6.0
6.1
19.1
2.1
18.27
2.37
1.86
1.9
5.9
6.3
2.2
6.8
2.0
4.6
2.3
1.8
1.0
2.0
1.3
1.7
3.0
13.7
6.0
2.0
5.9
5.0
4.9
15.29
1.66
2.63
2.0
0.7
1.0
6.7
6.7
2.8
4.1
5.2
4.0
3.9
34.5
30.1
4.6
1.5
1.2
4.1
2.8
1.9
1.9
1.9
3.3
3.3
3.3
5.8
5.9
6.3
5.9
2.0
9.2
6.6
1.0
1.7
79.96
1.7
2.3
3.0
3.0
13.88
64.35
8.83
71.85
65.94
94.03
63.51
64.89
62.71
63.42
63.32
59.11
63.52
66.48
67.86
64.4
67.34
45.51
46.65
54.69
82.38
83.91
56.58
63.2
64.71
1.66
1.5
61.0
55.7
0.97
1.25
1.37
1.0
2.44
0.43
0.03
9.14
1.6
32.15
22.94
5.05
0.18
78.89
4.84
0.0
11.84
11.29
75.16
11.37
9.44
10.09
68.8
9.75
8.41
75.63
11.15
9.0
77.76
10.37
4.71
10.91
9.79
9.81
9.79
10.26
11.18
12.59
10.33
10.17
8.32
8.56
72.57
82.53
8.67
71.41
6.55
84.0
13.28
10.37
73.09
8.22
12.37
72.96
11.62
68.44
9.86
70.36
8.38
70.34
12.89
68.61
13.29
68.53
10.46
76.63
62.5
6.13
11.89
10.6
10.75
10.97
11.4
12.67
12.4
10.99
10.51
10.01
12.76
13.1
12.17
9.57
10.42
10.94
9.89
11.12
10.74
11.92
10.59
13.36
12.51
10.08
47.75
7.76
73.93
11.97
10.0
68.31
31.0
68.56
30.1
68.58
68.71
68.86
9.9
62.13
9.23
59.73
9.89
68.37
7.34
67.15
9.01
67.73
8.72
68.52
1.18
6.88
73.01
9.21
67.91
4.93
9.9
62.13
9.23
59.73
7.34
67.15
8.34
68.14
13.36
12.11
8.21
8.55
11.91
73.82
71.61
11.07
65.18
11.02
66.56
8.82
74.93
9.23
59.73
67.73
10.37
10.83
10.91
9.79
10.26
62.13
11.18
12.59
10.33
10.17
82.53
68.44
11.92
62.13
9.01
67.73
9.9
62.13
11.18
11.62
68.44
9.86
70.36
12.89
68.61
13.29
68.53
12.67
11.92
9.9
67.73
62.13
11.18
59.73
68.44
11.92
9.23
11.85
11.85
12.01
12.01
12.01
12.68
12.68
12.68
12.82
12.82
12.85
12.85
8.67
10.26
12.42
11.92
50.06
46.67
56.6
44.48
52.51
42.99
28.4
32.82
45.47
43.92
51.14
48.1
66.7
32.63
37.93
52.58
48.82
50.72
33.57
49.27
12.65
63.64
3.75
5.36
56.5
59.7
60.9
48.99
45.7
76.7
29.2
53.38
53.57
47.97
95.51
90.46
87.05
80.37
89.1
82.45
48.01
42.15
52.53
53.17
54.37
60.0
60.9
55.77
49.61
54.45
55.19
35.63
50.68
52.7
54.24
59.19
63.23
66.89
62.67
69.11
37.4
58.15
57.02
72.35
76.79
66.24
70.44
62.05
72.51
38.63
45.78
48.06
42.17
51.2
47.16
46.56
40.67
46.85
59.55
50.05
51.09
43.93
47.31
56.3
48.44
45.76
38.45
44.82
49.41
42.67
50.51
42.1
55.7
53.74
52.37
50.8
51.15
53.96
47.8
46.7
56.51
63.08
58.17
73.42
72.05
36.58
24.52
65.75
65.02
70.04
70.08
69.45
38.55
79.62
78.73
68.13
27.88
54.35
45.82
48.02
47.57
48.83
48.47
50.2
48.81
63.08
56.51
58.17
46.28
43.46
46.71
44.24
44.53
46.53
45.84
45.76
45.0
50.37
48.9
51.3
36.63
58.41
57.5
48.25
48.06
55.84
54.94
59.67
44.15
40.62
69.25
43.95
45.97
44.59
56.43
54.92
55.29
53.28
43.02
48.44
44.7
57.02
58.78
58.42
56.82
53.17
60.9
61.0
61.21
37.4
58.15
67.32
43.29
43.4
38.77
41.35
40.8
50.2
44.87
43.42
41.58
43.4
41.9
50.77
44.16
43.6
50.57
43.3
43.39
42.57
51.1
44.9
44.98
41.21
41.48
42.68
36.27
40.15
41.17
49.15
43.17
43.05
38.92
41.77
41.53
50.4
47.03
40.11
45.85
47.13
57.68
41.36
58.65
76.0
57.37
63.0
50.42
48.24
36.98
45.85
40.11
47.03
63.64
64.02
57.27
58.81
0.56
61.74
63.9
49.41
50.68
22.5
47.0
50.34
66.41
54.9
66.05
51.35
52.76
46.11
47.43
52.58
38.94
49.96
42.29
34.71
44.62
45.91
40.7
40.6
81.42
77.38
87.2
93.93
74.61
78.18
46.9
48.1
35.08
46.4
33.57
46.34
19.62
55.29
57.52
50.3
47.16
50.34
50.92
48.36
54.56
50.54
46.64
57.3
51.98
52.52
48.02
53.61
48.61
45.17
44.9
61.74
63.9
26.52
72.84
45.18
47.11
28.4
73.99
47.93
35.62
35.52
66.44
63.77
65.65
56.44
26.98
65.71
64.78
65.68
53.85
56.16
55.6
52.09
46.4
51.42
51.44
47.99
41.91
64.77
64.18
29.63
63.18
55.85
49.48
48.14
46.4
40.9
52.52
48.02
78.98
65.61
64.24
64.96
56.16
33.87
55.45
51.92
51.37
44.57
41.78
43.95
48.15
41.87
43.32
42.38
46.8
47.31
43.22
38.83
43.06
36.05
58.78
58.42
42.62
60.44
33.57
38.53
40.38
43.55
43.12
37.28
42.57
43.33
51.6
51.6
49.9
46.4
46.1
46.01
47.37
47.58
45.92
24.52
50.92
43.37
43.37
46.3
49.0
45.3
59.9
64.0
66.0
68.2
54.4
56.5
59.1
81.39
77.82
73.0
78.2
65.7
58.05
50.0
48.96
80.91
79.12
30.5
42.44
75.69
80.78
62.58
70.32
72.78
77.68
78.8
82.15
76.36
73.1
50.48
50.99
72.94
38.14
75.6
79.7
81.4
81.4
82.4
81.7
76.1
78.1
79.0
78.1
51.3
51.5
42.0
48.8
46.0
52.3
53.2
53.5
80.1
80.8
51.33
54.18
53.37
71.24
71.16
69.09
8.05
61.6
47.21
48.48
46.94
81.4
78.1
77.89
69.39
70.99
60.99
50.32
53.15
51.9
74.33
70.87
54.83
75.0
72.62
73.9
75.2
76.4
76.0
76.4
72.1
77.9
7.7
74.06
74.77
73.2
74.0
75.5
75.4
68.0
72.4
74.0
8.19
69.33
72.58
64.67
55.6
65.49
56.87
64.06
54.5
65.0
55.38
73.0
65.1
73.52
66.28
72.87
65.57
72.79
72.49
65.02
72.54
64.65
70.0
61.93
71.19
62.22
72.05
64.53
72.72
67.13
71.51
63.35
73.28
65.76
72.8
65.65
73.25
65.68
72.51
64.88
70.46
62.04
72.45
65.46
72.19
64.28
65.79
68.73
70.24
69.33
56.64
57.54
57.0
70.58
72.11
71.19
60.35
61.45
60.79
69.48
71.41
70.25
60.05
60.96
60.41
59.17
60.8
59.82
73.2
74.46
73.71
60.08
60.97
59.49
72.51
72.79
72.32
57.56
58.92
58.11
52.51
61.36
57.57
66.7
66.0
67.76
59.08
58.12
60.52
68.11
67.31
69.3
72.3
73.01
60.3
59.63
61.29
53.8
52.71
55.43
57.29
56.78
58.05
73.3
72.83
74.01
52.01
50.69
53.99
63.84
63.23
64.76
59.76
59.49
60.15
51.91
51.36
52.74
66.33
65.78
67.17
55.22
54.74
55.93
64.48
63.98
58.66
60.3
60.57
62.56
69.24
68.58
70.21
70.14
69.65
70.89
59.69
59.13
60.51
59.55
58.26
61.49
57.0
69.5
56.33
68.91
58.01
70.4
52.29
65.6
51.62
65.19
53.31
66.22
60.91
69.93
60.09
69.22
62.15
71.0
51.12
61.7
50.5
60.48
52.05
63.52
52.36
53.01
52.62
52.38
54.66
53.29
60.8
60.35
61.47
53.5
55.98
54.49
53.79
52.62
55.56
61.77
60.9
63.08
56.07
55.35
57.16
67.25
66.55
68.31
58.69
51.41
50.82
52.3
63.17
62.64
63.96
55.59
54.37
57.42
63.02
61.82
64.83
46.49
45.56
47.88
53.91
52.74
55.67
63.64
72.28
62.62
61.65
64.07
72.93
72.52
73.56
60.67
60.0
61.68
60.91
59.74
62.67
70.59
69.79
71.8
62.92
62.57
63.44
63.93
64.36
72.67
73.27
71.57
70.99
72.46
57.18
55.8
59.26
67.31
66.5
68.53
60.74
59.75
62.22
63.52
62.52
65.02
57.1
57.2
56.9
67.4
66.5
68.6
56.8
55.6
58.6
58.0
56.9
59.7
66.4
65.1
68.4
63.56
72.42
66.47
36.51
31.2
30.25
30.44
25.17
28.13
71.21
72.95
65.2
66.42
70.09
73.31
73.05
61.91
63.07
53.09
61.92
52.58
73.65
64.6
72.33
72.52
57.21
47.68
54.63
46.27
60.9
72.64
72.35
73.08
72.51
72.24
72.93
73.09
72.88
73.4
73.07
72.81
73.46
71.5
71.05
72.17
68.75
67.82
70.15
71.7
71.3
72.31
64.35
63.7
65.33
64.56
63.99
65.14
65.06
64.5
65.92
72.96
72.66
73.4
72.96
72.66
73.4
73.43
73.18
73.81
73.43
73.18
73.81
72.44
72.04
73.04
70.63
69.94
71.68
72.44
72.04
73.04
64.79
64.17
65.71
64.96
64.37
65.87
65.35
64.83
66.2
71.68
69.94
70.63
66.35
65.33
54.87
57.68
55.99
60.58
62.99
61.54
64.65
60.46
73.11
54.88
67.95
58.64
73.75
73.5
59.68
56.8
69.43
65.38
74.14
61.51
73.62
56.39
70.81
62.27
78.07
64.4
74.57
72.35
31.16
29.04
66.44
64.7
80.52
66.44
70.39
73.1
73.84
62.38
71.68
61.82
71.32
61.77
59.61
70.41
15.41
19.91
56.26
57.67
59.69
69.48
71.79
56.95
65.24
77.71
82.19
57.82
70.23
38.97
53.33
54.66
70.11
55.95
68.67
52.86
63.38
64.99
72.9
60.32
71.79
54.29
68.68
61.87
71.41
62.23
61.45
72.22
71.87
52.4
60.78
59.47
71.18
71.72
63.81
65.29
63.26
60.82
74.75
67.96
68.68
66.43
64.55
58.54
56.49
58.77
63.35
64.72
65.81
66.27
62.72
73.41
64.32
64.92
64.62
60.02
65.57
67.09
60.69
62.86
60.38
62.13
63.61
64.65
60.34
57.16
50.5
66.19
61.57
61.09
64.02
73.24
65.78
66.9
62.58
64.76
69.45
61.24
63.21
58.58
61.33
65.66
57.98
60.61
55.9
58.98
61.87
55.99
59.11
54.54
57.7
58.09
55.28
58.69
54.5
57.5
72.9
71.11
73.31
72.68
62.45
62.67
65.47
64.65
66.61
66.31
62.79
58.64
72.58
60.61
73.76
73.43
65.52
69.95
62.93
70.62
57.84
73.32
65.93
57.54
63.32
71.49
61.96
75.02
64.29
72.91
72.51
73.27
56.39
59.82
72.89
71.44
71.99
65.26
64.73
61.13
56.44
71.28
70.17
72.51
62.22
70.3
61.68
63.27
61.99
74.12
74.26
59.29
61.39
73.97
72.63
73.17
64.27
81.65
72.41
63.79
71.33
65.55
73.48
74.48
73.98
74.99
64.79
65.51
72.08
72.84
58.8
59.34
51.58
4.22
2.8
17.59
12.9
7.99
14.0
7.0
9.5
8.0
22.9
4.51
2.04
0.34
9.0
14.0
9.83
20.1
10.87
9.38
2.04
2.5
15.0
8.5
0.9
2.09
1.94
4.54
7.0
9.23
9.34
9.43
11.65
7.88
2.0
8.74
9.86
6.31
2.74
3.73
12.04
5.05
11.26
2.8
11.0
6.23
3.7
7.18
9.3
5.56
5.8
3.06
15.52
2.27
1.35
92.87
90.65
91.18
88.5
86.8
81.1
81.8
83.2
85.7
88.5
87.7
87.9
89.84
94.0
89.0
88.0
88.1
88.6
86.2
71.2
85.4
87.41
12.08
83.85
86.53
90.46
89.75
37.44
89.52
71.0
67.0
60.27
65.67
73.72
76.09
74.68
50.14
55.28
58.36
64.96
51.4
86.91
34.7
39.43
40.8
44.94
43.84
41.9
41.6
27.1
29.2
40.5
39.75
29.6
41.0
36.8
35.1
39.43
36.9
2.5
39.25
37.5
2.5
44.3
37.5
36.6
40.9
33.6
38.23
2.5
2.5
2.5
2.8
3.0
5.7
1.8
3.5
2.0
2.5
4.0
4.5
nan
8.0
8.5
2.8
2.0
3.75
2.8
8.5
9.5
2.7
2.7
2.7
3.0
2.7
2.5
2.8
2.7
3.0
2.8
3.0
2.5
2.35
6.0
2.5
2.5
2.5
2.0
2.5
2.0
2.0
2.2
2.2
4.0
4.0
2.5
2.0
2.0
2.0
1.4
6.0
2.0
3.5
2.0
1.2
1.0
2.5
1.0
1.77
2.0
2.0
1.9
2.0
2.0
1.0
1.0
3.8
1.0
3.8
1.7
1.0
3.5
2.7
2.7
2.5
2.5
3.0
3.5
3.0
4.5
2.7
3.0
2.0
2.8
1.82
2.0
2.5
9.0
2.5
2.0
2.5
2.5
2.75
2.4
3.0
2.5
2.5
3.0
2.8
3.9
6.0
2.4
2.5
2.5
2.5
2.0
2.0
3.0
2.2
2.4
2.3
2.5
3.0
2.65
2.3
1.9
2.5
2.2
3.0
2.3
3.4
3.5
4.1
2.5
2.8
2.0
2.0
1.7
1.7
1.7
2.5
2.5
3.0
12.8
12.8
12.8
12.0
12.75
12.8
12.75
12.75
12.75
12.8
12.75
12.75
12.8
12.75
13.6
13.0
12.8
12.8
12.8
2.5
2.5
2.5
2.8
2.8
2.8
2.8
2.5
2.5
12.75
12.75
2.2
3.1
2.2
2.6
2.0
2.4
2.2
2.2
3.4
3.5
2.0
3.2
3.3
2.5
3.0
2.5
0.7
2.5
2.5
2.5
2.5
4.5
4.5
3.0
3.0
4.5
2.1
3.2
1.5
1.5
1.5
2.5
3.0
3.0
2.0
3.0
2.3
3.0
0.4
4.1
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.5
2.9
2.5
2.3
2.3
2.3
2.5
2.3
2.2
3.0
2.3
2.0
3.0
2.6
3.0
2.0
2.7
2.7
44.2
35.62
2.0
2.0
2.5
4.0
2.0
2.2
3.0
1.0
2.0
2.4
2.5
2.5
2.5
3.5
3.0
4.0
3.0
3.0
2.5
2.3
2.3
2.5
2.5
2.8
35.43
33.5
34.9
26.05
5.7
1.8
2.0
2.5
2.0
2.0
30.15
11.31
10.27
24.83
6.23
22.1
6.17
8.01
14.26
38.39
33.34
33.0
32.6
2.73
11.5
93.9
93.9
93.6
93.8
93.7
93.9
93.3
93.1
93.9
94.0
91.3
92.3
95.5
94.0
92.5
14.0
89.55
77.82
50.57
67.38
60.59
63.02
70.96
65.04
78.34
66.06
69.01
62.36
8.27
70.93
8.04
66.47
26.88
63.59
42.74
42.45
9.06
8.58
7.94
10.76
27.86
70.94
27.66
50.38
8.07
8.07
7.27
67.6
41.63
70.26
69.3
74.6
2.5
2.4
75.2
75.34
4.5
2.0
2.5
2.9
2.6
2.0
2.9
4.0
87.5
87.23
87.78
2.4
47.3
55.2
90.4
71.2
70.3
22.39
55.1
72.5
57.5
74.6
0.0
88.05
80.1
88.7
7.4
57.1
71.4
90.0
62.5
78.6
87.0
78.8
86.0
86.7
80.8
87.2
81.8
27.3
81.2
18.2
90.7
80.0
45.9
86.1
74.79
67.8
66.0
77.2
73.0
84.0
11.6
69.6
0.02
80.2
71.3
69.8
83.5
68.8
51.2
66.7
23.6
69.8
79.0
80.7
67.4
74.2
84.0
89.7
75.4
99.7
38.8
75.0
65.1
58.9
71.5
0.0
2.9
40.0
0.0
76.1
72.8
76.3
28.0
68.7
86.67
5.7
94.66
89.69
8.1
8.09
5.42
10.15
93.35
96.21
52.96
54.0
31.57
39.96
79.21
81.58
76.13
68.1
76.03
73.44
69.38
69.64
72.34
65.96
88.21
85.48
0.25
65.82
76.24
38.04
33.81
72.6
35.48
20.59
56.49
69.41
61.52
74.62
63.35
22.79
67.78
75.68
75.96
34.92
64.28
76.54
64.58
61.5
6.49
70.59
79.78
6.36
16.92
33.11
52.51
33.77
72.82
23.93
81.83
65.4
11.64
92.65
85.23
85.02
89.22
75.83
60.69
67.68
84.48
58.66
60.72
87.67
76.68
5.0
65.47
34.0
71.27
77.4
76.2
71.2
56.8
4.7
9.36
5.92
8.98
91.41
92.25
62.39
99.64
29.89
55.01
61.88
40.12
41.29
68.28
40.65
43.42
44.85
42.23
37.02
72.51
40.49
59.24
38.44
60.18
43.19
42.17
43.02
68.24
58.82
71.31
41.32
78.15
33.09
43.38
43.12
72.18
36.68
41.37
71.77
54.66
59.85
28.92
66.64
56.74
42.3
74.03
32.9
71.31
66.64
59.85
64.53
64.87
65.29
63.72
55.2
68.17
75.56
75.92
75.25
51.82
52.38
30.31
33.75
66.8
65.96
67.29
59.1
59.88
58.62
59.88
53.83
56.5
61.12
37.5
67.39
65.47
67.27
58.87
52.16
50.36
53.12
61.32
66.03
75.91
83.41
50.8
15.3
58.54
67.57
50.6
59.09
78.82
42.61
46.08
52.32
51.32
59.4
64.8
46.05
37.63
41.05
67.38
39.25
61.82
52.69
45.15
74.78
84.06
52.17
50.84
81.01
90.08
71.33
80.24
48.43
73.16
72.75
73.32
32.4
1.84
96.9
56.2
74.0
38.0
78.5
81.5
72.0
63.4
56.0
59.7
6.2
31.9
56.0
3.2
70.0
86.2
2.0
77.9
44.7
77.8
46.0
74.7
73.0
65.0
59.0
50.9
56.33
63.8
90.9
2.2
73.5
71.2
71.2
71.3
87.7
44.1
68.0
78.7
7.2
3.49
5.8
56.9
2.52
37.0
0.12
82.5
2.8
3.0
2.9
59.2
30.0
51.8
2.8
5.2
55.6
8.5
87.9
89.1
86.2
6.1
84.1
84.1
69.9
15.0
1.4
3.7
1.0
87.5
0.0
90.8
1.1
5.6
50.5
60.2
15.8
46.0
93.5
83.5
83.5
82.9
88.0
34.3
39.9
45.03
95.7
79.5
73.2
50.0
45.8
6.1
2.15
11.7
1.4
3.5
96.44
12.8
86.76
4.1
15.0
75.5
11.9
91.5
58.84
45.0
58.0
65.01
58.0
45.0
70.0
70.0
58.0
91.5
91.4
92.1
86.9
88.9
92.23
8.75
7.4
8.0
5.0
62.04
0.0
91.28
7.4
1.9
8.5
7.4
75.4
82.3
59.3
80.3
66.72
58.9
58.5
53.1
60.0
54.2
72.7
62.0
21.8
70.9
84.3
90.2
65.8
65.1
67.7
54.3
58.7
22.2
1.32
76.1
92.5
83.5
62.7
2.09
93.5
59.5
61.2
87.63
85.3
12.32
59.1
87.13
54.8
94.69
61.7
64.9
69.5
3.09
83.5
42.8
6.16
95.2
37.8
40.9
87.9
56.44
85.23
81.81
32.0
1.0
72.6
72.57
77.5
78.4
2.5
3.4
68.0
43.1
56.7
94.03
81.8
69.84
3.2
88.2
80.87
81.4
80.7
57.52
90.0
2.0
76.7
83.1
1.3
5.0
2.8
81.6
59.6
14.5
49.9
21.7
0.0
23.9
55.5
9.0
4.2
84.4
53.0
54.66
28.24
6.8
10.4
6.84
8.2
81.9
43.0
70.25
26.0
79.2
78.5
data.drop_duplicates(keep="first", inplace=False)
0 15.87
2 0.24
3 42.41
4 41.11
5 48.42...
8598 21.70
8600 23.90
8607 28.24
8610 6.84
8613 43.00
Name: Water_(g), Length: 4180, dtype: float64
2.显示信息
- .head()默认显示前5行,也可以在里面加参数,显示自己要显示的行数
- .tail()显示末尾几行
- .columns这个参数显示列名
- .shape
# 显示前三条数据。不加默认显示5行
first_rows = food_info.head(3)
print("显示后三行:\n", first_rows) # 打印前三行
# 显示末尾几行
print("类型", type(first_rows))
print("显示后三行:\n", food_info.tail(3))
print("columns:", food_info.columns) # 显示列名
print("shape:", food_info.shape)
显示后三行:NDB_No Shrt_Desc Water_(g) Energ_Kcal Protein_(g) \
0 1001 BUTTER WITH SALT 15.87 717 0.85
1 1002 BUTTER WHIPPED WITH SALT 15.87 717 0.85
2 1003 BUTTER OIL ANHYDROUS 0.24 876 0.28 Lipid_Tot_(g) Ash_(g) Carbohydrt_(g) Fiber_TD_(g) Sugar_Tot_(g) ... \
0 81.11 2.11 0.06 0.0 0.06 ...
1 81.11 2.11 0.06 0.0 0.06 ...
2 99.48 0.00 0.00 0.0 0.00 ... Vit_A_IU Vit_A_RAE Vit_E_(mg) Vit_D_mcg Vit_D_IU Vit_K_(mcg) \
0 2499.0 684.0 2.32 1.5 60.0 7.0
1 2499.0 684.0 2.32 1.5 60.0 7.0
2 3069.0 840.0 2.80 1.8 73.0 8.6 FA_Sat_(g) FA_Mono_(g) FA_Poly_(g) Cholestrl_(mg)
0 51.368 21.021 3.043 215.0
1 50.489 23.426 3.012 219.0
2 61.924 28.732 3.694 256.0 [3 rows x 36 columns]
类型 <class 'pandas.core.frame.DataFrame'>
显示后三行:NDB_No Shrt_Desc Water_(g) Energ_Kcal Protein_(g) \
8615 90480 SYRUP CANE 26.0 269 0.0
8616 90560 SNAIL RAW 79.2 90 16.1
8617 93600 TURTLE GREEN RAW 78.5 89 19.8 Lipid_Tot_(g) Ash_(g) Carbohydrt_(g) Fiber_TD_(g) Sugar_Tot_(g) \
8615 0.0 0.86 73.14 0.0 73.2
8616 1.4 1.30 2.00 0.0 0.0
8617 0.5 1.20 0.00 0.0 0.0 ... Vit_A_IU Vit_A_RAE Vit_E_(mg) Vit_D_mcg Vit_D_IU Vit_K_(mcg) \
8615 ... 0.0 0.0 0.0 0.0 0.0 0.0
8616 ... 100.0 30.0 5.0 0.0 0.0 0.1
8617 ... 100.0 30.0 0.5 0.0 0.0 0.1 FA_Sat_(g) FA_Mono_(g) FA_Poly_(g) Cholestrl_(mg)
8615 0.000 0.000 0.000 0.0
8616 0.361 0.259 0.252 50.0
8617 0.127 0.088 0.170 50.0 [3 rows x 36 columns]
columns: Index(['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)','Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)','Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)','Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)','Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)','Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)','Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg','Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)','Cholestrl_(mg)'],dtype='object')
shape: (8618, 36)
3.获取数据
- 单行数据:通过loc[m]得到第m行的数据
- 多行数据:通过loc[[m:n]]得到第m:n列的数据
- 单列数据:通过列名属性得到 food_info[“NDB_No”]
- 多列数据:传入列表:
# pandas uses zero-indexing
# Series object representing the row at index 0.
print(food_info.loc[0]) # 获取数据
# Series object representing the seventh row.
food_info.loc[6]
# Will throw an error: "KeyError: 'the label [8620] is not in the [index]'"
# food_info.loc[8620]
NDB_No 1001
Shrt_Desc BUTTER WITH SALT
Water_(g) 15.87
Energ_Kcal 717
Protein_(g) 0.85
Lipid_Tot_(g) 81.11
Ash_(g) 2.11
Carbohydrt_(g) 0.06
Fiber_TD_(g) 0.0
Sugar_Tot_(g) 0.06
Calcium_(mg) 24.0
Iron_(mg) 0.02
Magnesium_(mg) 2.0
Phosphorus_(mg) 24.0
Potassium_(mg) 24.0
Sodium_(mg) 643.0
Zinc_(mg) 0.09
Copper_(mg) 0.0
Manganese_(mg) 0.0
Selenium_(mcg) 1.0
Vit_C_(mg) 0.0
Thiamin_(mg) 0.005
Riboflavin_(mg) 0.034
Niacin_(mg) 0.042
Vit_B6_(mg) 0.003
Vit_B12_(mcg) 0.17
Vit_A_IU 2499.0
Vit_A_RAE 684.0
Vit_E_(mg) 2.32
Vit_D_mcg 1.5
Vit_D_IU 60.0
Vit_K_(mcg) 7.0
FA_Sat_(g) 51.368
FA_Mono_(g) 21.021
FA_Poly_(g) 3.043
Cholestrl_(mg) 215.0
Name: 0, dtype: objectNDB_No 1007
Shrt_Desc CHEESE CAMEMBERT
Water_(g) 51.8
Energ_Kcal 300
Protein_(g) 19.8
Lipid_Tot_(g) 24.26
Ash_(g) 3.68
Carbohydrt_(g) 0.46
Fiber_TD_(g) 0.0
Sugar_Tot_(g) 0.46
Calcium_(mg) 388.0
Iron_(mg) 0.33
Magnesium_(mg) 20.0
Phosphorus_(mg) 347.0
Potassium_(mg) 187.0
Sodium_(mg) 842.0
Zinc_(mg) 2.38
Copper_(mg) 0.021
Manganese_(mg) 0.038
Selenium_(mcg) 14.5
Vit_C_(mg) 0.0
Thiamin_(mg) 0.028
Riboflavin_(mg) 0.488
Niacin_(mg) 0.63
Vit_B6_(mg) 0.227
Vit_B12_(mcg) 1.3
Vit_A_IU 820.0
Vit_A_RAE 241.0
Vit_E_(mg) 0.21
Vit_D_mcg 0.4
Vit_D_IU 18.0
Vit_K_(mcg) 2.0
FA_Sat_(g) 15.259
FA_Mono_(g) 7.023
FA_Poly_(g) 0.724
Cholestrl_(mg) 72.0
Name: 6, dtype: object
# object - For string values
# int - For integer values
# float - For float values
# datetime - For time values
# bool - For Boolean values
# print(food_info.dtypes)
# Returns a DataFrame containing the rows at indexes 3, 4, 5, and 6.
print("loc_3_6:\n", food_info.loc[3:6]) # 切片取数据
# Returns a DataFrame containing the rows at indexes 2, 5, and 10. Either of the following approaches will work.
# Method 1
two_five_ten = [2,5,10]
print("loc_3_6_1:\n", food_info.loc[two_five_ten])# Method 2
print("loc_3_6_2:\n", food_info.loc[[2, 5, 10]])
loc_3_6:NDB_No Shrt_Desc Water_(g) Energ_Kcal Protein_(g) \
3 1004 CHEESE BLUE 42.41 353 21.40
4 1005 CHEESE BRICK 41.11 371 23.24
5 1006 CHEESE BRIE 48.42 334 20.75
6 1007 CHEESE CAMEMBERT 51.80 300 19.80 Lipid_Tot_(g) Ash_(g) Carbohydrt_(g) Fiber_TD_(g) Sugar_Tot_(g) ... \
3 28.74 5.11 2.34 0.0 0.50 ...
4 29.68 3.18 2.79 0.0 0.51 ...
5 27.68 2.70 0.45 0.0 0.45 ...
6 24.26 3.68 0.46 0.0 0.46 ... Vit_A_IU Vit_A_RAE Vit_E_(mg) Vit_D_mcg Vit_D_IU Vit_K_(mcg) \
3 721.0 198.0 0.25 0.5 21.0 2.4
4 1080.0 292.0 0.26 0.5 22.0 2.5
5 592.0 174.0 0.24 0.5 20.0 2.3
6 820.0 241.0 0.21 0.4 18.0 2.0 FA_Sat_(g) FA_Mono_(g) FA_Poly_(g) Cholestrl_(mg)
3 18.669 7.778 0.800 75.0
4 18.764 8.598 0.784 94.0
5 17.410 8.013 0.826 100.0
6 15.259 7.023 0.724 72.0 [4 rows x 36 columns]
loc_3_6_1:NDB_No Shrt_Desc Water_(g) Energ_Kcal Protein_(g) \
2 1003 BUTTER OIL ANHYDROUS 0.24 876 0.28
5 1006 CHEESE BRIE 48.42 334 20.75
10 1011 CHEESE COLBY 38.20 394 23.76 Lipid_Tot_(g) Ash_(g) Carbohydrt_(g) Fiber_TD_(g) Sugar_Tot_(g) ... \
2 99.48 0.00 0.00 0.0 0.00 ...
5 27.68 2.70 0.45 0.0 0.45 ...
10 32.11 3.36 2.57 0.0 0.52 ... Vit_A_IU Vit_A_RAE Vit_E_(mg) Vit_D_mcg Vit_D_IU Vit_K_(mcg) \
2 3069.0 840.0 2.80 1.8 73.0 8.6
5 592.0 174.0 0.24 0.5 20.0 2.3
10 994.0 264.0 0.28 0.6 24.0 2.7 FA_Sat_(g) FA_Mono_(g) FA_Poly_(g) Cholestrl_(mg)
2 61.924 28.732 3.694 256.0
5 17.410 8.013 0.826 100.0
10 20.218 9.280 0.953 95.0 [3 rows x 36 columns]
loc_3_6_2:NDB_No Shrt_Desc Water_(g) Energ_Kcal Protein_(g) \
2 1003 BUTTER OIL ANHYDROUS 0.24 876 0.28
5 1006 CHEESE BRIE 48.42 334 20.75
10 1011 CHEESE COLBY 38.20 394 23.76 Lipid_Tot_(g) Ash_(g) Carbohydrt_(g) Fiber_TD_(g) Sugar_Tot_(g) ... \
2 99.48 0.00 0.00 0.0 0.00 ...
5 27.68 2.70 0.45 0.0 0.45 ...
10 32.11 3.36 2.57 0.0 0.52 ... Vit_A_IU Vit_A_RAE Vit_E_(mg) Vit_D_mcg Vit_D_IU Vit_K_(mcg) \
2 3069.0 840.0 2.80 1.8 73.0 8.6
5 592.0 174.0 0.24 0.5 20.0 2.3
10 994.0 264.0 0.28 0.6 24.0 2.7 FA_Sat_(g) FA_Mono_(g) FA_Poly_(g) Cholestrl_(mg)
2 61.924 28.732 3.694 256.0
5 17.410 8.013 0.826 100.0
10 20.218 9.280 0.953 95.0 [3 rows x 36 columns]
# Series object representing the "NDB_No" column.
ndb_col = food_info["NDB_No"] # 输入列名,得到这一列的数据
print("ndb_col:\n", ndb_col)
# Alternatively, you can access a column by passing in a string variable.
col_name = "NDB_No"
ndb_col = food_info[col_name]
print("ndb_col_v2:\n", ndb_col)
ndb_col:0 1001
1 1002
2 1003
3 1004
4 1005...
8613 83110
8614 90240
8615 90480
8616 90560
8617 93600
Name: NDB_No, Length: 8618, dtype: int64
ndb_col_v2:0 1001
1 1002
2 1003
3 1004
4 1005...
8613 83110
8614 90240
8615 90480
8616 90560
8617 93600
Name: NDB_No, Length: 8618, dtype: int64
# 得到两列
columns = ["Zinc_(mg)", "Copper_(mg)"]
zinc_copper = food_info[columns]
print("zinc_copper:\n", zinc_copper)
# print zinc_copper
# Skipping the assignment.
zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]]
print("zinc_copper_v2:\n", zinc_copper)
zinc_copper:Zinc_(mg) Copper_(mg)
0 0.09 0.000
1 0.05 0.016
2 0.01 0.001
3 2.66 0.040
4 2.60 0.024
... ... ...
8613 1.10 0.100
8614 1.55 0.033
8615 0.19 0.020
8616 1.00 0.400
8617 1.00 0.250[8618 rows x 2 columns]
zinc_copper_v2:Zinc_(mg) Copper_(mg)
0 0.09 0.000
1 0.05 0.016
2 0.01 0.001
3 2.66 0.040
4 2.60 0.024
... ... ...
8613 1.10 0.100
8614 1.55 0.033
8615 0.19 0.020
8616 1.00 0.400
8617 1.00 0.250[8618 rows x 2 columns]
二、实践一
- .tolist()得到列名
- c.endwith(‘’)是否以…结尾
# print(food_info.columns)
# print(food_info.head(2))
col_names = food_info.columns.tolist() # 得到列名
print("col_names:\n", col_names)
gram_columns = [] # 定义一个列表
for c in col_names:if c.endswith("(g)"): # 以g结尾gram_columns.append(c) # 添加元素
gram_df = food_info[gram_columns]
print("head:\n", gram_df.head(3))
col_names:['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)', 'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)', 'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)', 'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)', 'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)', 'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)', 'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg', 'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)', 'Cholestrl_(mg)']
head:Water_(g) Protein_(g) Lipid_Tot_(g) Ash_(g) Carbohydrt_(g) \
0 15.87 0.85 81.11 2.11 0.06
1 15.87 0.85 81.11 2.11 0.06
2 0.24 0.28 99.48 0.00 0.00 Fiber_TD_(g) Sugar_Tot_(g) FA_Sat_(g) FA_Mono_(g) FA_Poly_(g)
0 0.0 0.06 51.368 21.021 3.043
1 0.0 0.06 50.489 23.426 3.012
2 0.0 0.00 61.924 28.732 3.694
import pandas
food_info = pandas.read_csv("../../data/food_info.csv")
col_names = food_info.columns.tolist()
print(col_names)
print(food_info.head(3))
['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)', 'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)', 'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)', 'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)', 'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)', 'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)', 'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg', 'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)', 'Cholestrl_(mg)']NDB_No Shrt_Desc Water_(g) Energ_Kcal Protein_(g) \
0 1001 BUTTER WITH SALT 15.87 717 0.85
1 1002 BUTTER WHIPPED WITH SALT 15.87 717 0.85
2 1003 BUTTER OIL ANHYDROUS 0.24 876 0.28 Lipid_Tot_(g) Ash_(g) Carbohydrt_(g) Fiber_TD_(g) Sugar_Tot_(g) ... \
0 81.11 2.11 0.06 0.0 0.06 ...
1 81.11 2.11 0.06 0.0 0.06 ...
2 99.48 0.00 0.00 0.0 0.00 ... Vit_A_IU Vit_A_RAE Vit_E_(mg) Vit_D_mcg Vit_D_IU Vit_K_(mcg) \
0 2499.0 684.0 2.32 1.5 60.0 7.0
1 2499.0 684.0 2.32 1.5 60.0 7.0
2 3069.0 840.0 2.80 1.8 73.0 8.6 FA_Sat_(g) FA_Mono_(g) FA_Poly_(g) Cholestrl_(mg)
0 51.368 21.021 3.043 215.0
1 50.489 23.426 3.012 219.0
2 61.924 28.732 3.694 256.0 [3 rows x 36 columns]
2.1 操作
- 可以进行加减乘除操作
* 简单的和常数作运算可以,和另外的列做运算也可以 - 也可以添加列
print (food_info["Iron_(mg)"])
div_1000 = food_info["Iron_(mg)"] / 1000
print ("div_1000:\n", div_1000)
# Adds 100 to each value in the column and returns a Series object.
add_100 = food_info["Iron_(mg)"] + 100
print ("add_100:\n", add_100)# Subtracts 100 from each value in the column and returns a Series object.
sub_100 = food_info["Iron_(mg)"] - 100
print ("sub_100:\n",sub_100)# Multiplies each value in the column by 2 and returns a Series object.
mult_2 = food_info["Iron_(mg)"]*2
print ("mult_2:\n",mult_2)
0 0.02
1 0.16
2 0.00
3 0.31
4 0.43...
8613 1.40
8614 0.58
8615 3.60
8616 3.50
8617 1.40
Name: Iron_(mg), Length: 8618, dtype: float64
div_1000:0 0.00002
1 0.00016
2 0.00000
3 0.00031
4 0.00043...
8613 0.00140
8614 0.00058
8615 0.00360
8616 0.00350
8617 0.00140
Name: Iron_(mg), Length: 8618, dtype: float64
add_100:0 100.02
1 100.16
2 100.00
3 100.31
4 100.43...
8613 101.40
8614 100.58
8615 103.60
8616 103.50
8617 101.40
Name: Iron_(mg), Length: 8618, dtype: float64
sub_100:0 -99.98
1 -99.84
2 -100.00
3 -99.69
4 -99.57...
8613 -98.60
8614 -99.42
8615 -96.40
8616 -96.50
8617 -98.60
Name: Iron_(mg), Length: 8618, dtype: float64
mult_2:0 0.04
1 0.32
2 0.00
3 0.62
4 0.86...
8613 2.80
8614 1.16
8615 7.20
8616 7.00
8617 2.80
Name: Iron_(mg), Length: 8618, dtype: float64
# It applies the arithmetic operator to the first value in both columns, the second value in both columns, and so onwater_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]
water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]
iron_grams = food_info["Iron_(mg)"] / 1000 #
print (food_info.shape)
food_info["Iron_(g)"] = iron_grams # 新建一个列名,并对其赋值
print (food_info.shape)
(8618, 36)
(8618, 37)
#Score=2×(Protein_(g))−0.75×(Lipid_Tot_(g))
weighted_protein = food_info["Protein_(g)"] * 2
weighted_fat = -0.75 * food_info["Lipid_Tot_(g)"]
initial_rating = weighted_protein + weighted_fat
2.2 某一列的最值
- 先获得这一列的数据,最后获得最值
max最大值,min最小值
# the "Vit_A_IU" column ranges from 0 to 100000, while the "Fiber_TD_(g)" column ranges from 0 to 79
#For certain calculations, columns like "Vit_A_IU" can have a greater effect on the result,
#due to the scale of the values
# The largest value in the "Energ_Kcal" column.
max_calories = food_info["Energ_Kcal"].min()
print(max_calories)
# Divide the values in "Energ_Kcal" by the largest value.
normalized_calories = food_info["Energ_Kcal"] / max_calories
normalized_protein = food_info["Protein_(g)"] / food_info["Protein_(g)"].max()
normalized_fat = food_info["Lipid_Tot_(g)"] / food_info["Lipid_Tot_(g)"].max()
food_info["Normalized_Protein"] = normalized_protein
food_info["Normalized_Fat"] = normalized_fat
print(food_info.shape)
0
(8618, 39)
2.3 排序
- 对某一列的数据进行排序,函数sort_values(‘列名’,inplace=True) 包括从大到小,从小到大
#By default, pandas will sort the data by the column we specify in ascending order and return a new DataFrame
# Sorts the DataFrame in-place, rather than=true returning a new DataFrame.
#print food_info["Sodium_(mg)"]
food_info.sort_values("Sodium_(mg)", inplace=True) # 指定列进行从小到大排序
print (food_info["Sodium_(mg)"])
#Sorts by descending order, rather than ascending.
food_info.sort_values("Sodium_(mg)", inplace=True, ascending=False) # 降序
print (food_info["Sodium_(mg)"])
760 0.0
758 0.0
405 0.0
761 0.0
2269 0.0...
8184 NaN
8185 NaN
8195 NaN
8251 NaN
8267 NaN
Name: Sodium_(mg), Length: 8618, dtype: float64
276 38758.0
5814 27360.0
6192 26050.0
1242 26000.0
1245 24000.0...
8184 NaN
8185 NaN
8195 NaN
8251 NaN
8267 NaN
Name: Sodium_(mg), Length: 8618, dtype: float64
三、实践二:泰坦尼克船员获救案例
Surivived为标签
pclass为所居住的环境,一等舱
SibSp 兄弟姐妹的数量
Parch 登船后老人和孩子的数量
ticket:船票编码
Fare:船票价格
Cabin:船舱的序号,NaN表示缺失值
Embarked:登船地点
import pandas as pd
import numpy as np
titanic_survival = pd.read_csv("../../data/titanic_train.csv")
titanic_survival.head(3)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3.1 相关函数整理
- pandas.isnull(age):判断一组数据是否是缺失值
这里有一点有注意,python中可以用‘是/否’作为索引,从而得到相应的数据 - len()这个是个通用的函数,并非类中的函数,所以是传参形的
age = titanic_survival["Age"]
print(age.loc[0:10]) # 年龄前10个数据
# 缺失值处理
age_is_null = pd.isnull(age) # 判断一组数据是否是缺失值
print (age_is_null)age_null_true = age[age_is_null]
print (age_null_true) # 打印处年龄是缺失值的值
age_null_count = len(age_null_true) # 打印年龄是缺失值的函数的个数
print(age_null_count)
0 22.0
1 38.0
2 26.0
3 35.0
4 35.0
5 NaN
6 54.0
7 2.0
8 27.0
9 14.0
10 4.0
Name: Age, dtype: float64
0 False
1 False
2 False
3 False
4 False...
886 False
887 False
888 True
889 False
890 False
Name: Age, Length: 891, dtype: bool
5 NaN
17 NaN
19 NaN
26 NaN
28 NaN..
859 NaN
863 NaN
868 NaN
878 NaN
888 NaN
Name: Age, Length: 177, dtype: float64
177
注意:统计数据中,如果数据中有一个是缺失,怎会造成所有数据呈现缺失的结果
mean_age = sum(titanic_survival["Age"]) / len(titanic_survival["Age"]) # 平均年龄
print (mean_age)
nan
3.2 除去缺失数据的方法
- 自己判断
- tinanic_surival[‘Age’][age_is_null==False],后面的这个就是加上的判断
- 自带函数
- 求平均的可以用.mean()
#we have to filter out the missing values before we calculate the mean.
good_ages = titanic_survival["Age"][age_is_null == False]
#print good_ages
correct_mean_age = sum(good_ages) / len(good_ages)
print (correct_mean_age)
29.69911764705882
# missing data is so common that many pandas methods automatically filter for it
# 线程的
correct_mean_age = titanic_survival["Age"].mean()
print (correct_mean_age)
29.69911764705882
#mean fare for each class
# 分别求不同船舱的平均价格
passenger_classes = [1, 2, 3]
fares_by_class = {} # 定义一个字典
for this_class in passenger_classes:pclass_rows = titanic_survival[titanic_survival["Pclass"] == this_class]pclass_fares = pclass_rows["Fare"] # 定位到价格fare_for_class = pclass_fares.mean()fares_by_class[this_class] = fare_for_classprint (fares_by_class)
{1: 84.1546875, 2: 20.662183152173913, 3: 13.675550101832993}
#index tells the method which column to group by
#values is the column that we want to apply the calculation to
#aggfunc specifies the calculation we want to perform
# index:以这个为基准
# valuses:统计index与这个值的关系
passenger_survival = titanic_survival.pivot_table(index="Pclass", values="Survived", aggfunc=np.mean)
print (passenger_survival)
Survived
Pclass
1 0.629630
2 0.472826
3 0.242363
# 不指定function的话默认安装求均值
passenger_age = titanic_survival.pivot_table(index="Pclass", values="Age")
print(passenger_age)
Age
Pclass
1 38.233441
2 29.877630
3 25.140620
- 一个量与两个量的关系
port_stats = titanic_survival.pivot_table(index="Embarked", values=["Fare","Survived"], aggfunc=np.sum)
print(port_stats)
Fare Survived
Embarked
C 10072.2962 93
Q 1022.2543 30
S 17439.3988 217
# specifying axis=1 or axis='columns' will drop any columns that have null values
drop_na_columns = titanic_survival.dropna(axis=1) # axis是维度
# 如果再Age和Sex之间有缺失值,就会把数据丢掉
new_titanic_survival = titanic_survival.dropna(axis=0,subset=["Age", "Sex"])
print(new_titanic_survival.head(2))
PassengerId Survived Pclass \
0 1 0 3
1 2 1 1 Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
# 定位到具体的样本
row_index_83_age = titanic_survival.loc[83,"Age"]
row_index_1000_pclass = titanic_survival.loc[766,"Pclass"]
print (row_index_83_age)
print (row_index_1000_pclass)
28.0
1
new_titanic_survival = titanic_survival.sort_values("Age",ascending=False) # 降序
print (new_titanic_survival[0:10])# index也会自动排序
titanic_reindexed = new_titanic_survival.reset_index(drop=True)
print('-------------')
print(titanic_reindexed.loc[0:10])
PassengerId Survived Pclass Name \
630 631 1 1 Barkworth, Mr. Algernon Henry Wilson
851 852 0 3 Svensson, Mr. Johan
493 494 0 1 Artagaveytia, Mr. Ramon
96 97 0 1 Goldschmidt, Mr. George B
116 117 0 3 Connors, Mr. Patrick
672 673 0 2 Mitchell, Mr. Henry Michael
745 746 0 1 Crosby, Capt. Edward Gifford
33 34 0 2 Wheadon, Mr. Edward H
54 55 0 1 Ostby, Mr. Engelhart Cornelius
280 281 0 3 Duane, Mr. Frank Sex Age SibSp Parch Ticket Fare Cabin Embarked
630 male 80.0 0 0 27042 30.0000 A23 S
851 male 74.0 0 0 347060 7.7750 NaN S
493 male 71.0 0 0 PC 17609 49.5042 NaN C
96 male 71.0 0 0 PC 17754 34.6542 A5 C
116 male 70.5 0 0 370369 7.7500 NaN Q
672 male 70.0 0 0 C.A. 24580 10.5000 NaN S
745 male 70.0 1 1 WE/P 5735 71.0000 B22 S
33 male 66.0 0 0 C.A. 24579 10.5000 NaN S
54 male 65.0 0 1 113509 61.9792 B30 C
280 male 65.0 0 0 336439 7.7500 NaN Q
-------------PassengerId Survived Pclass Name Sex \
0 631 1 1 Barkworth, Mr. Algernon Henry Wilson male
1 852 0 3 Svensson, Mr. Johan male
2 494 0 1 Artagaveytia, Mr. Ramon male
3 97 0 1 Goldschmidt, Mr. George B male
4 117 0 3 Connors, Mr. Patrick male
5 673 0 2 Mitchell, Mr. Henry Michael male
6 746 0 1 Crosby, Capt. Edward Gifford male
7 34 0 2 Wheadon, Mr. Edward H male
8 55 0 1 Ostby, Mr. Engelhart Cornelius male
9 281 0 3 Duane, Mr. Frank male
10 457 0 1 Millet, Mr. Francis Davis male Age SibSp Parch Ticket Fare Cabin Embarked
0 80.0 0 0 27042 30.0000 A23 S
1 74.0 0 0 347060 7.7750 NaN S
2 71.0 0 0 PC 17609 49.5042 NaN C
3 71.0 0 0 PC 17754 34.6542 A5 C
4 70.5 0 0 370369 7.7500 NaN Q
5 70.0 0 0 C.A. 24580 10.5000 NaN S
6 70.0 1 1 WE/P 5735 71.0000 B22 S
7 66.0 0 0 C.A. 24579 10.5000 NaN S
8 65.0 0 1 113509 61.9792 B30 C
9 65.0 0 0 336439 7.7500 NaN Q
10 65.0 0 0 13509 26.5500 E38 S
3.3 函数操作
- 自定义apply函数
# This function returns the hundredth item from a seriesdef hundredth_row(column):# Extract the hundredth itemhundredth_item = column.loc[99]return hundredth_item# Return the hundredth item from each column
hundredth_row = titanic_survival.apply(hundredth_row)
print (hundredth_row)
PassengerId 100
Survived 0
Pclass 2
Name Kantor, Mr. Sinai
Sex male
Age 34.0
SibSp 1
Parch 0
Ticket 244367
Fare 26.0
Cabin NaN
Embarked S
dtype: object
# 每一列缺失值的个数
def not_null_count(column):column_null = pd.isnull(column)null = column[column_null]return len(null)column_null_count = titanic_survival.apply(not_null_count)
print (column_null_count)
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64
#By passing in the axis=1 argument, we can use the DataFrame.apply() method to iterate over rows instead of columns.
# 数据转换
def which_class(row):pclass = row['Pclass']if pd.isnull(pclass):return "Unknown"elif pclass == 1:return "First Class"elif pclass == 2:return "Second Class"elif pclass == 3:return "Third Class"classes = titanic_survival.apply(which_class, axis=1)
print (classes)
0 Third Class
1 First Class
2 Third Class
3 First Class
4 Third Class...
886 Second Class
887 First Class
888 Third Class
889 First Class
890 Third Class
Length: 891, dtype: object
# 年龄
def is_minor(row):if row["Age"] < 18:return Trueelse:return Falseminors = titanic_survival.apply(is_minor, axis=1)
print(minors)def generate_age_label(row):age = row["Age"]if pd.isnull(age):return "unknown"elif age < 18:return "minor"else:return "adult"age_labels = titanic_survival.apply(generate_age_label, axis=1)
print (age_labels)
0 False
1 False
2 False
3 False
4 False...
886 False
887 False
888 False
889 False
890 False
Length: 891, dtype: bool
0 adult
1 adult
2 adult
3 adult
4 adult...
886 adult
887 adult
888 unknown
889 adult
890 adult
Length: 891, dtype: object
titanic_survival['age_labels'] = age_labels
age_group_survival = titanic_survival.pivot_table(index="age_labels", values="Survived")
print (age_group_survival)
Survived
age_labels
adult 0.381032
minor 0.539823
unknown 0.293785
四、DataFrame结构
DataFrame结构是读取进来的矩阵,Series是矩阵的一行或者一列,Series里面的结构是ndarray
import pandas as pd
fandango = pd.read_csv('./../../data/fandango_score_comparison.csv')
series_film = fandango['FILM'] # 这是一个Series结构的
print (type(series_film))
print(series_film[0:5])
series_rt = fandango['RottenTomatoes']
print (series_rt[0:5])
<class 'pandas.core.series.Series'>
0 Avengers: Age of Ultron (2015)
1 Cinderella (2015)
2 Ant-Man (2015)
3 Do You Believe? (2015)
4 Hot Tub Time Machine 2 (2015)
Name: FILM, dtype: object
0 74
1 85
2 80
3 18
4 14
Name: RottenTomatoes, dtype: int64
新建Series结构
# Import the Series object from pandas
from pandas import Seriesfilm_names = series_film.values
print (type(film_names))
print ("film_names:\n", film_names)
rt_scores = series_rt.values
print (rt_scores)
<class 'numpy.ndarray'>
film_names:['Avengers: Age of Ultron (2015)' 'Cinderella (2015)' 'Ant-Man (2015)''Do You Believe? (2015)' 'Hot Tub Time Machine 2 (2015)''The Water Diviner (2015)' 'Irrational Man (2015)' 'Top Five (2014)''Shaun the Sheep Movie (2015)' 'Love & Mercy (2015)''Far From The Madding Crowd (2015)' 'Black Sea (2015)' 'Leviathan (2014)''Unbroken (2014)' 'The Imitation Game (2014)' 'Taken 3 (2015)''Ted 2 (2015)' 'Southpaw (2015)''Night at the Museum: Secret of the Tomb (2014)' 'Pixels (2015)''McFarland, USA (2015)' 'Insidious: Chapter 3 (2015)''The Man From U.N.C.L.E. (2015)' 'Run All Night (2015)''Trainwreck (2015)' 'Selma (2014)' 'Ex Machina (2015)''Still Alice (2015)' 'Wild Tales (2014)' 'The End of the Tour (2015)''Red Army (2015)' 'When Marnie Was There (2015)''The Hunting Ground (2015)' 'The Boy Next Door (2015)' 'Aloha (2015)''The Loft (2015)' '5 Flights Up (2015)' 'Welcome to Me (2015)''Saint Laurent (2015)' 'Maps to the Stars (2015)'"I'll See You In My Dreams (2015)" 'Timbuktu (2015)' 'About Elly (2015)''The Diary of a Teenage Girl (2015)''Kingsman: The Secret Service (2015)' 'Tomorrowland (2015)''The Divergent Series: Insurgent (2015)' 'Annie (2014)''Fantastic Four (2015)' 'Terminator Genisys (2015)''Pitch Perfect 2 (2015)' 'Entourage (2015)' 'The Age of Adaline (2015)''Hot Pursuit (2015)' 'The DUFF (2015)' 'Black or White (2015)''Project Almanac (2015)' 'Ricki and the Flash (2015)''Seventh Son (2015)' 'Mortdecai (2015)' 'Unfinished Business (2015)''American Ultra (2015)' 'True Story (2015)' 'Child 44 (2015)''Dark Places (2015)' 'Birdman (2014)' 'The Gift (2015)''Unfriended (2015)' 'Monkey Kingdom (2015)' 'Mr. Turner (2014)''Seymour: An Introduction (2015)' 'The Wrecking Crew (2015)''American Sniper (2015)' 'Furious 7 (2015)''The Hobbit: The Battle of the Five Armies (2014)' 'San Andreas (2015)''Straight Outta Compton (2015)' 'Vacation (2015)' 'Chappie (2015)''Poltergeist (2015)' 'Paper Towns (2015)' 'Big Eyes (2014)''Blackhat (2015)' 'Self/less (2015)' 'Sinister 2 (2015)''Little Boy (2015)' 'Me and Earl and The Dying Girl (2015)''Maggie (2015)' 'Mad Max: Fury Road (2015)' 'Spy (2015)''The SpongeBob Movie: Sponge Out of Water (2015)' 'Paddington (2015)''Dope (2015)' 'What We Do in the Shadows (2015)' 'The Overnight (2015)''The Salt of the Earth (2015)' 'Song of the Sea (2014)''Fifty Shades of Grey (2015)' 'Get Hard (2015)' 'Focus (2015)''Jupiter Ascending (2015)' 'The Gallows (2015)''The Second Best Exotic Marigold Hotel (2015)' 'Strange Magic (2015)''The Gunman (2015)' 'Hitman: Agent 47 (2015)' 'Cake (2015)''The Vatican Tapes (2015)' 'A Little Chaos (2015)''The 100-Year-Old Man Who Climbed Out the Window and Disappeared (2015)''Escobar: Paradise Lost (2015)' 'Into the Woods (2014)''It Follows (2015)' 'Inherent Vice (2014)' 'A Most Violent Year (2014)'"While We're Young (2015)" 'Clouds of Sils Maria (2015)''Testament of Youth (2015)' 'Infinitely Polar Bear (2015)''Phoenix (2015)' 'The Wolfpack (2015)''The Stanford Prison Experiment (2015)' 'Tangerine (2015)''Magic Mike XXL (2015)' 'Home (2015)' 'The Wedding Ringer (2015)''Woman in Gold (2015)' 'The Last Five Years (2015)''Mission: Impossible – Rogue Nation (2015)' 'Amy (2015)''Jurassic World (2015)' 'Minions (2015)' 'Max (2015)''Paul Blart: Mall Cop 2 (2015)' 'The Longest Ride (2015)''The Lazarus Effect (2015)' 'The Woman In Black 2 Angel of Death (2015)''Danny Collins (2015)' 'Spare Parts (2015)' 'Serena (2015)''Inside Out (2015)' 'Mr. Holmes (2015)' "'71 (2015)"'Two Days, One Night (2014)' 'Gett: The Trial of Viviane Amsalem (2015)''Kumiko, The Treasure Hunter (2015)']
[ 74 85 80 18 14 63 42 86 99 89 84 82 99 51 90 9 46 5950 17 79 59 68 60 85 99 92 88 96 92 96 89 92 10 19 1152 71 51 60 94 99 97 95 75 50 30 27 9 26 67 32 54 871 39 34 64 12 12 11 46 45 26 26 92 93 60 94 98 100 9372 81 61 50 90 27 30 31 55 72 34 20 13 20 81 54 97 9378 98 87 96 82 96 99 25 29 57 26 16 62 17 17 7 49 1340 67 52 71 96 73 90 83 89 81 80 99 84 84 95 62 45 2752 60 92 97 71 54 35 5 31 14 22 77 52 18 98 87 97 97100 87]
# int index is also aviable
# 指定key,还有一个媒体的评分值。string字符name当成索引
series_custom = Series(rt_scores , index=film_names)
series_custom[['Minions (2015)', 'Leviathan (2014)']]
fiveten = series_custom[5:10]
print(fiveten)
The Water Diviner (2015) 63
Irrational Man (2015) 42
Top Five (2014) 86
Shaun the Sheep Movie (2015) 99
Love & Mercy (2015) 89
dtype: int64
# 很少对serise作排序original_index = series_custom.index.tolist()
print("original_index:\n", original_index)
sorted_index = sorted(original_index)
sorted_by_index = series_custom.reindex(sorted_index)
print ("sorted_by_index:\n", sorted_by_index)
original_index:['Avengers: Age of Ultron (2015)', 'Cinderella (2015)', 'Ant-Man (2015)', 'Do You Believe? (2015)', 'Hot Tub Time Machine 2 (2015)', 'The Water Diviner (2015)', 'Irrational Man (2015)', 'Top Five (2014)', 'Shaun the Sheep Movie (2015)', 'Love & Mercy (2015)', 'Far From The Madding Crowd (2015)', 'Black Sea (2015)', 'Leviathan (2014)', 'Unbroken (2014)', 'The Imitation Game (2014)', 'Taken 3 (2015)', 'Ted 2 (2015)', 'Southpaw (2015)', 'Night at the Museum: Secret of the Tomb (2014)', 'Pixels (2015)', 'McFarland, USA (2015)', 'Insidious: Chapter 3 (2015)', 'The Man From U.N.C.L.E. (2015)', 'Run All Night (2015)', 'Trainwreck (2015)', 'Selma (2014)', 'Ex Machina (2015)', 'Still Alice (2015)', 'Wild Tales (2014)', 'The End of the Tour (2015)', 'Red Army (2015)', 'When Marnie Was There (2015)', 'The Hunting Ground (2015)', 'The Boy Next Door (2015)', 'Aloha (2015)', 'The Loft (2015)', '5 Flights Up (2015)', 'Welcome to Me (2015)', 'Saint Laurent (2015)', 'Maps to the Stars (2015)', "I'll See You In My Dreams (2015)", 'Timbuktu (2015)', 'About Elly (2015)', 'The Diary of a Teenage Girl (2015)', 'Kingsman: The Secret Service (2015)', 'Tomorrowland (2015)', 'The Divergent Series: Insurgent (2015)', 'Annie (2014)', 'Fantastic Four (2015)', 'Terminator Genisys (2015)', 'Pitch Perfect 2 (2015)', 'Entourage (2015)', 'The Age of Adaline (2015)', 'Hot Pursuit (2015)', 'The DUFF (2015)', 'Black or White (2015)', 'Project Almanac (2015)', 'Ricki and the Flash (2015)', 'Seventh Son (2015)', 'Mortdecai (2015)', 'Unfinished Business (2015)', 'American Ultra (2015)', 'True Story (2015)', 'Child 44 (2015)', 'Dark Places (2015)', 'Birdman (2014)', 'The Gift (2015)', 'Unfriended (2015)', 'Monkey Kingdom (2015)', 'Mr. Turner (2014)', 'Seymour: An Introduction (2015)', 'The Wrecking Crew (2015)', 'American Sniper (2015)', 'Furious 7 (2015)', 'The Hobbit: The Battle of the Five Armies (2014)', 'San Andreas (2015)', 'Straight Outta Compton (2015)', 'Vacation (2015)', 'Chappie (2015)', 'Poltergeist (2015)', 'Paper Towns (2015)', 'Big Eyes (2014)', 'Blackhat (2015)', 'Self/less (2015)', 'Sinister 2 (2015)', 'Little Boy (2015)', 'Me and Earl and The Dying Girl (2015)', 'Maggie (2015)', 'Mad Max: Fury Road (2015)', 'Spy (2015)', 'The SpongeBob Movie: Sponge Out of Water (2015)', 'Paddington (2015)', 'Dope (2015)', 'What We Do in the Shadows (2015)', 'The Overnight (2015)', 'The Salt of the Earth (2015)', 'Song of the Sea (2014)', 'Fifty Shades of Grey (2015)', 'Get Hard (2015)', 'Focus (2015)', 'Jupiter Ascending (2015)', 'The Gallows (2015)', 'The Second Best Exotic Marigold Hotel (2015)', 'Strange Magic (2015)', 'The Gunman (2015)', 'Hitman: Agent 47 (2015)', 'Cake (2015)', 'The Vatican Tapes (2015)', 'A Little Chaos (2015)', 'The 100-Year-Old Man Who Climbed Out the Window and Disappeared (2015)', 'Escobar: Paradise Lost (2015)', 'Into the Woods (2014)', 'It Follows (2015)', 'Inherent Vice (2014)', 'A Most Violent Year (2014)', "While We're Young (2015)", 'Clouds of Sils Maria (2015)', 'Testament of Youth (2015)', 'Infinitely Polar Bear (2015)', 'Phoenix (2015)', 'The Wolfpack (2015)', 'The Stanford Prison Experiment (2015)', 'Tangerine (2015)', 'Magic Mike XXL (2015)', 'Home (2015)', 'The Wedding Ringer (2015)', 'Woman in Gold (2015)', 'The Last Five Years (2015)', 'Mission: Impossible – Rogue Nation (2015)', 'Amy (2015)', 'Jurassic World (2015)', 'Minions (2015)', 'Max (2015)', 'Paul Blart: Mall Cop 2 (2015)', 'The Longest Ride (2015)', 'The Lazarus Effect (2015)', 'The Woman In Black 2 Angel of Death (2015)', 'Danny Collins (2015)', 'Spare Parts (2015)', 'Serena (2015)', 'Inside Out (2015)', 'Mr. Holmes (2015)', "'71 (2015)", 'Two Days, One Night (2014)', 'Gett: The Trial of Viviane Amsalem (2015)', 'Kumiko, The Treasure Hunter (2015)']
sorted_by_index:'71 (2015) 97
5 Flights Up (2015) 52
A Little Chaos (2015) 40
A Most Violent Year (2014) 90
About Elly (2015) 97..
What We Do in the Shadows (2015) 96
When Marnie Was There (2015) 89
While We're Young (2015) 83
Wild Tales (2014) 96
Woman in Gold (2015) 52
Length: 146, dtype: int64
sc2 = series_custom.sort_index() #键排序
sc3 = series_custom.sort_values() # 值排序
#print(sc2[0:10])
print(sc3[0:10])
Paul Blart: Mall Cop 2 (2015) 5
Hitman: Agent 47 (2015) 7
Hot Pursuit (2015) 8
Fantastic Four (2015) 9
Taken 3 (2015) 9
The Boy Next Door (2015) 10
The Loft (2015) 11
Unfinished Business (2015) 11
Mortdecai (2015) 12
Seventh Son (2015) 12
dtype: int64
#The values in a Series object are treated as an ndarray, the core data type in NumPy
import numpy as np
# Add each value with each other
print (np.add(series_custom, series_custom))
# Apply sine function to each value
np.sin(series_custom)
# Return the highest value (will return a single value not a Series)
np.max(series_custom)
Avengers: Age of Ultron (2015) 148
Cinderella (2015) 170
Ant-Man (2015) 160
Do You Believe? (2015) 36
Hot Tub Time Machine 2 (2015) 28...
Mr. Holmes (2015) 174
'71 (2015) 194
Two Days, One Night (2014) 194
Gett: The Trial of Viviane Amsalem (2015) 200
Kumiko, The Treasure Hunter (2015) 174
Length: 146, dtype: int64100
#will actually return a Series object with a boolean value for each film
series_custom > 50
series_greater_than_50 = series_custom[series_custom > 50]criteria_one = series_custom > 50
criteria_two = series_custom < 75
both_criteria = series_custom[criteria_one & criteria_two]
print (both_criteria)
Avengers: Age of Ultron (2015) 74
The Water Diviner (2015) 63
Unbroken (2014) 51
Southpaw (2015) 59
Insidious: Chapter 3 (2015) 59
The Man From U.N.C.L.E. (2015) 68
Run All Night (2015) 60
5 Flights Up (2015) 52
Welcome to Me (2015) 71
Saint Laurent (2015) 51
Maps to the Stars (2015) 60
Pitch Perfect 2 (2015) 67
The Age of Adaline (2015) 54
The DUFF (2015) 71
Ricki and the Flash (2015) 64
Unfriended (2015) 60
American Sniper (2015) 72
The Hobbit: The Battle of the Five Armies (2014) 61
Paper Towns (2015) 55
Big Eyes (2014) 72
Maggie (2015) 54
Focus (2015) 57
The Second Best Exotic Marigold Hotel (2015) 62
The 100-Year-Old Man Who Climbed Out the Window and Disappeared (2015) 67
Escobar: Paradise Lost (2015) 52
Into the Woods (2014) 71
Inherent Vice (2014) 73
Magic Mike XXL (2015) 62
Woman in Gold (2015) 52
The Last Five Years (2015) 60
Jurassic World (2015) 71
Minions (2015) 54
Spare Parts (2015) 52
dtype: int64
#data alignment same index
#定义了两个series结构rt_critics = Series(fandango['RottenTomatoes'].values, index=fandango['FILM'])
rt_users = Series(fandango['RottenTomatoes_User'].values, index=fandango['FILM'])
rt_mean = (rt_critics + rt_users)/2print(rt_mean)
FILM
Avengers: Age of Ultron (2015) 80.0
Cinderella (2015) 82.5
Ant-Man (2015) 85.0
Do You Believe? (2015) 51.0
Hot Tub Time Machine 2 (2015) 21.0...
Mr. Holmes (2015) 82.5
'71 (2015) 89.5
Two Days, One Night (2014) 87.5
Gett: The Trial of Viviane Amsalem (2015) 90.5
Kumiko, The Treasure Hunter (2015) 75.0
Length: 146, dtype: float64
五、其它操作
import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(12).reshape(3,4),columns=['A', 'B', 'C', 'D'])
df
A | B | C | D | |
---|---|---|---|---|
0 | 0 | 1 | 2 | 3 |
1 | 4 | 5 | 6 | 7 |
2 | 8 | 9 | 10 | 11 |
type(df)
pandas.core.frame.DataFrame
df.drop(['B','C'],axis=1,inplace=True)
df
A | D | |
---|---|---|
0 | 0 | 3 |
1 | 4 | 7 |
2 | 8 | 11 |
#will return a new DataFrame that is indexed by the values in the specified column
#and will drop that column from the DataFrame
#without the FILM column dropped
fandango = pd.read_csv('../../data/fandango_score_comparison.csv')
print (type(fandango))
# 电影名字作为索引
fandango_films = fandango.set_index('FILM', drop=False)
print(fandango_films.index)
<class 'pandas.core.frame.DataFrame'>
Index(['Avengers: Age of Ultron (2015)', 'Cinderella (2015)', 'Ant-Man (2015)','Do You Believe? (2015)', 'Hot Tub Time Machine 2 (2015)','The Water Diviner (2015)', 'Irrational Man (2015)', 'Top Five (2014)','Shaun the Sheep Movie (2015)', 'Love & Mercy (2015)',...'The Woman In Black 2 Angel of Death (2015)', 'Danny Collins (2015)','Spare Parts (2015)', 'Serena (2015)', 'Inside Out (2015)','Mr. Holmes (2015)', ''71 (2015)', 'Two Days, One Night (2014)','Gett: The Trial of Viviane Amsalem (2015)','Kumiko, The Treasure Hunter (2015)'],dtype='object', name='FILM', length=146)
# Slice using either bracket notation or loc[]
#字符也可以进行切片
fandango_films["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]
fandango_films.loc["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]# Specific movie
fandango_films.loc['Kumiko, The Treasure Hunter (2015)']# Selecting list of movies
movies = ['Kumiko, The Treasure Hunter (2015)', 'Do You Believe? (2015)', 'Ant-Man (2015)']
fandango_films.loc[movies]#When selecting multiple rows, a DataFrame is returned,
#but when selecting an individual row, a Series object is returned instead
FILM | RottenTomatoes | RottenTomatoes_User | Metacritic | Metacritic_User | IMDB | Fandango_Stars | Fandango_Ratingvalue | RT_norm | RT_user_norm | ... | IMDB_norm | RT_norm_round | RT_user_norm_round | Metacritic_norm_round | Metacritic_user_norm_round | IMDB_norm_round | Metacritic_user_vote_count | IMDB_user_vote_count | Fandango_votes | Fandango_Difference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FILM | |||||||||||||||||||||
Kumiko, The Treasure Hunter (2015) | Kumiko, The Treasure Hunter (2015) | 87 | 63 | 68 | 6.4 | 6.7 | 3.5 | 3.5 | 4.35 | 3.15 | ... | 3.35 | 4.5 | 3.0 | 3.5 | 3.0 | 3.5 | 19 | 5289 | 41 | 0.0 |
Do You Believe? (2015) | Do You Believe? (2015) | 18 | 84 | 22 | 4.7 | 5.4 | 5.0 | 4.5 | 0.90 | 4.20 | ... | 2.70 | 1.0 | 4.0 | 1.0 | 2.5 | 2.5 | 31 | 3136 | 1793 | 0.5 |
Ant-Man (2015) | Ant-Man (2015) | 80 | 90 | 64 | 8.1 | 7.8 | 5.0 | 4.5 | 4.00 | 4.50 | ... | 3.90 | 4.0 | 4.5 | 3.0 | 4.0 | 4.0 | 627 | 103660 | 12055 | 0.5 |
3 rows × 22 columns
#The apply() method in Pandas allows us to specify Python logic
#The apply() method requires you to pass in a vectorized operation
#that can be applied over each Series object.
import numpy as np# returns the data types as a Series
types = fandango_films.dtypes
print (types)
# filter data types to just floats, index attributes returns just column names
float_columns = types[types.values == 'float64'].index
# use bracket notation to filter columns to just float columns
float_df = fandango_films[float_columns]
print (float_df)
# `x` is a Series object representing a column
deviations = float_df.apply(lambda x: np.std(x))#print(deviations)
FILM object
RottenTomatoes int64
RottenTomatoes_User int64
Metacritic int64
Metacritic_User float64
IMDB float64
Fandango_Stars float64
Fandango_Ratingvalue float64
RT_norm float64
RT_user_norm float64
Metacritic_norm float64
Metacritic_user_nom float64
IMDB_norm float64
RT_norm_round float64
RT_user_norm_round float64
Metacritic_norm_round float64
Metacritic_user_norm_round float64
IMDB_norm_round float64
Metacritic_user_vote_count int64
IMDB_user_vote_count int64
Fandango_votes int64
Fandango_Difference float64
dtype: objectMetacritic_User IMDB \
FILM
Avengers: Age of Ultron (2015) 7.1 7.8
Cinderella (2015) 7.5 7.1
Ant-Man (2015) 8.1 7.8
Do You Believe? (2015) 4.7 5.4
Hot Tub Time Machine 2 (2015) 3.4 5.1
... ... ...
Mr. Holmes (2015) 7.9 7.4
'71 (2015) 7.5 7.2
Two Days, One Night (2014) 8.8 7.4
Gett: The Trial of Viviane Amsalem (2015) 7.3 7.8
Kumiko, The Treasure Hunter (2015) 6.4 6.7 Fandango_Stars \
FILM
Avengers: Age of Ultron (2015) 5.0
Cinderella (2015) 5.0
Ant-Man (2015) 5.0
Do You Believe? (2015) 5.0
Hot Tub Time Machine 2 (2015) 3.5
... ...
Mr. Holmes (2015) 4.0
'71 (2015) 3.5
Two Days, One Night (2014) 3.5
Gett: The Trial of Viviane Amsalem (2015) 3.5
Kumiko, The Treasure Hunter (2015) 3.5 Fandango_Ratingvalue RT_norm \
FILM
Avengers: Age of Ultron (2015) 4.5 3.70
Cinderella (2015) 4.5 4.25
Ant-Man (2015) 4.5 4.00
Do You Believe? (2015) 4.5 0.90
Hot Tub Time Machine 2 (2015) 3.0 0.70
... ... ...
Mr. Holmes (2015) 4.0 4.35
'71 (2015) 3.5 4.85
Two Days, One Night (2014) 3.5 4.85
Gett: The Trial of Viviane Amsalem (2015) 3.5 5.00
Kumiko, The Treasure Hunter (2015) 3.5 4.35 RT_user_norm Metacritic_norm \
FILM
Avengers: Age of Ultron (2015) 4.30 3.30
Cinderella (2015) 4.00 3.35
Ant-Man (2015) 4.50 3.20
Do You Believe? (2015) 4.20 1.10
Hot Tub Time Machine 2 (2015) 1.40 1.45
... ... ...
Mr. Holmes (2015) 3.90 3.35
'71 (2015) 4.10 4.15
Two Days, One Night (2014) 3.90 4.45
Gett: The Trial of Viviane Amsalem (2015) 4.05 4.50
Kumiko, The Treasure Hunter (2015) 3.15 3.40 Metacritic_user_nom IMDB_norm \
FILM
Avengers: Age of Ultron (2015) 3.55 3.90
Cinderella (2015) 3.75 3.55
Ant-Man (2015) 4.05 3.90
Do You Believe? (2015) 2.35 2.70
Hot Tub Time Machine 2 (2015) 1.70 2.55
... ... ...
Mr. Holmes (2015) 3.95 3.70
'71 (2015) 3.75 3.60
Two Days, One Night (2014) 4.40 3.70
Gett: The Trial of Viviane Amsalem (2015) 3.65 3.90
Kumiko, The Treasure Hunter (2015) 3.20 3.35 RT_norm_round RT_user_norm_round \
FILM
Avengers: Age of Ultron (2015) 3.5 4.5
Cinderella (2015) 4.5 4.0
Ant-Man (2015) 4.0 4.5
Do You Believe? (2015) 1.0 4.0
Hot Tub Time Machine 2 (2015) 0.5 1.5
... ... ...
Mr. Holmes (2015) 4.5 4.0
'71 (2015) 5.0 4.0
Two Days, One Night (2014) 5.0 4.0
Gett: The Trial of Viviane Amsalem (2015) 5.0 4.0
Kumiko, The Treasure Hunter (2015) 4.5 3.0 Metacritic_norm_round \
FILM
Avengers: Age of Ultron (2015) 3.5
Cinderella (2015) 3.5
Ant-Man (2015) 3.0
Do You Believe? (2015) 1.0
Hot Tub Time Machine 2 (2015) 1.5
... ...
Mr. Holmes (2015) 3.5
'71 (2015) 4.0
Two Days, One Night (2014) 4.5
Gett: The Trial of Viviane Amsalem (2015) 4.5
Kumiko, The Treasure Hunter (2015) 3.5 Metacritic_user_norm_round \
FILM
Avengers: Age of Ultron (2015) 3.5
Cinderella (2015) 4.0
Ant-Man (2015) 4.0
Do You Believe? (2015) 2.5
Hot Tub Time Machine 2 (2015) 1.5
... ...
Mr. Holmes (2015) 4.0
'71 (2015) 4.0
Two Days, One Night (2014) 4.5
Gett: The Trial of Viviane Amsalem (2015) 3.5
Kumiko, The Treasure Hunter (2015) 3.0 IMDB_norm_round \
FILM
Avengers: Age of Ultron (2015) 4.0
Cinderella (2015) 3.5
Ant-Man (2015) 4.0
Do You Believe? (2015) 2.5
Hot Tub Time Machine 2 (2015) 2.5
... ...
Mr. Holmes (2015) 3.5
'71 (2015) 3.5
Two Days, One Night (2014) 3.5
Gett: The Trial of Viviane Amsalem (2015) 4.0
Kumiko, The Treasure Hunter (2015) 3.5 Fandango_Difference
FILM
Avengers: Age of Ultron (2015) 0.5
Cinderella (2015) 0.5
Ant-Man (2015) 0.5
Do You Believe? (2015) 0.5
Hot Tub Time Machine 2 (2015) 0.5
... ...
Mr. Holmes (2015) 0.0
'71 (2015) 0.0
Two Days, One Night (2014) 0.0
Gett: The Trial of Viviane Amsalem (2015) 0.0
Kumiko, The Treasure Hunter (2015) 0.0 [146 rows x 15 columns]
rt_mt_user = float_df[['RT_user_norm', 'Metacritic_user_nom']]
# 匿名函数
rt_mt_user.apply(lambda x: np.std(x), axis=1)
FILM
Avengers: Age of Ultron (2015) 0.375
Cinderella (2015) 0.125
Ant-Man (2015) 0.225
Do You Believe? (2015) 0.925
Hot Tub Time Machine 2 (2015) 0.150...
Mr. Holmes (2015) 0.025
'71 (2015) 0.175
Two Days, One Night (2014) 0.250
Gett: The Trial of Viviane Amsalem (2015) 0.200
Kumiko, The Treasure Hunter (2015) 0.025
Length: 146, dtype: float64
参考
- 图解
这篇关于python-pandas-操作全集(持续更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!