FPGA - 仲裁器的设计实现

2024-04-16 06:20
文章标签 实现 设计 fpga 仲裁

本文主要是介绍FPGA - 仲裁器的设计实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,为什么做仲裁

在多主单从的设计中,当多个源端同时发起传输请求时,这个时候就需要仲裁器来根据优先级来判断响应哪一个源端,向其传输数据。比如:以太网仲裁,DDR仲裁,光纤传图仲裁.....

二,仲裁类别

仲裁器分为轮询仲裁(Round-Robiin)固定优先级仲裁(Fixed-Priority),轮询仲裁,各个源端优先级相同,当同时发起请求时,依次进行响应,而固定优先级仲裁就是根据优先级顺序依次进行响应。

轮询仲裁:每一路数据的优先级都是一样的

中断仲裁:有一路或者多路的优先级是最高的

用的比较多的方法就是轮询仲裁

三,轮询仲裁

在实际项目中,如果需要用到仲裁,可以以2路数据作为分析:

① :缓存每一路的数据

        使用两个FIFO

        数据FIFO缓存:data+last(last信号的作用指示每一帧数据的边界)

        控制FIFO缓存:缓存数据对应的信息:类型、地址、长度……

② :设计状态机(轮询跳变)

        复位状态机处于IDLE,复位结束调到发送通道0的状态

        发送通道0状态:开始判断通道0的数据有没有来(询问),如果通道0没有来数据,则调到通道1

        如果通道0有数据来,则把通道0的数据从FIFO里面读出来发送出去,然后跳到通道1。

        发送通道1状态:开始判断通道1的数据有没有来(询问),如果通道1没有来数据,则调到通道2

        如果通道1有数据来,则把通道1的数据从FIFO里面读出来发送出去,然后跳到通道2。

        …….

四,轮询仲裁逻辑设计

以2通道设计为例:

`timescale 1ns / 1psmodule mux2_arbit(input						   clk           ,input                          reset         ,input	      [15:0]           ch0_type      ,  //默认所有通道传来的信号都是reg型,所以进行无需打拍input	      [15:0]           ch0_length    ,input	                       ch0_data_vld  ,input	                       ch0_data_last ,input	      [7:0]            ch0_data      ,input	      [15:0]           ch1_type      ,input	      [15:0]           ch1_length    ,input	                       ch1_data_vld  ,input	                       ch1_data_last ,input	      [7:0]            ch1_data      ,output	reg   [15:0]           send_type      ,output	reg   [15:0]           send_length    ,output	reg                    send_data_vld  ,output	reg                    send_data_last ,output	reg   [7:0]            send_data      );
/*--------------------------------------------------*\状态机信号定义 
\*--------------------------------------------------*/
reg [2:0]  cur_status;
reg [2:0]  nxt_status;
localparam IDLE      = 2'b00;
localparam CH0_SEND  = 2'b01;
localparam CH1_SEND  = 2'b10;
/*--------------------------------------------------*\FIFO端口信号 
\*--------------------------------------------------*/
reg	 [31:0]  ch0_frame_din    ;
reg          ch0_frame_wren   ;
wire [31:0]  ch0_frame_dout   ;
reg 		 ch0_frame_rden   ;
wire		 ch0_frame_wrfull ;
wire		 ch0_frame_rdempty;
wire [4:0]   ch0_frame_count  ;reg	 [31:0]  ch1_frame_din    ;
reg          ch1_frame_wren   ;
wire [31:0]  ch1_frame_dout   ;
reg 		 ch1_frame_rden   ;
wire		 ch1_frame_wrfull ;
wire		 ch1_frame_rdempty;
wire [4:0]   ch1_frame_count  ;reg	 [8:0]   ch0_data_din    ;
reg          ch0_data_wren   ;
wire [8:0]   ch0_data_dout   ;
reg 		 ch0_data_rden   ;
wire		 ch0_data_wrfull ;
wire		 ch0_data_rdempty;
wire [11:0]  ch0_data_count  ;reg	 [8:0]   ch1_data_din    ;
reg          ch1_data_wren   ;
wire [8:0]   ch1_data_dout   ;
reg 		 ch1_data_rden   ;
wire		 ch1_data_wrfull ;
wire		 ch1_data_rdempty;
wire [11:0]  ch1_data_count  ;/*--------------------------------------------------*\其他端口信号 
\*--------------------------------------------------*/
reg           ch0_busy;
reg           ch1_busy;reg           ch0_frame_fifo_err;
reg           ch1_frame_fifo_err;
reg           ch0_data_fifo_err ;
reg           ch1_data_fifo_err ;/*--------------------------------------------------*\通道0、通道1的数据写入FIFO 
\*--------------------------------------------------*/
always @(posedge clk) beginch0_frame_wren <= ch0_data_last;ch0_frame_din  <= {ch0_type,ch0_length};ch1_frame_wren <= ch1_data_last;ch1_frame_din  <= {ch1_type,ch1_length};    
endalways @(posedge clk) beginch0_data_wren  <= ch0_data_vld;ch0_data_din   <= {ch0_data_last,ch0_data};	     ch1_data_wren  <= ch1_data_vld;ch1_data_din   <= {ch1_data_last,ch1_data};		  
end/*--------------------------------------------------*\busy信号
\*--------------------------------------------------*/
always @(posedge clk) beginif (reset) ch0_busy <= 0;else if (cur_status == CH0_SEND && send_data_last) ch0_busy <= 0;else if (cur_status == CH0_SEND && ~ch0_frame_rdempty)ch0_busy <= 1;
endalways @(posedge clk) beginif (reset) ch1_busy <= 0;else if (cur_status == CH1_SEND && send_data_last) ch1_busy <= 0;else if (cur_status == CH1_SEND && ~ch1_frame_rdempty)ch1_busy <= 1;
end/*--------------------------------------------------*\状态机设计
\*--------------------------------------------------*/
always @(posedge clk) beginif (reset) cur_status <= IDLE;else cur_status <= nxt_status;
endalways @(*) beginif (reset) beginnxt_status <= IDLE;		endelse begincase(cur_status)IDLE : beginnxt_status <= CH0_SEND;endCH0_SEND : beginif (~ch0_busy && ch0_frame_rdempty)nxt_status <= CH1_SEND;else if (send_data_last)nxt_status <= CH1_SEND;else nxt_status <= cur_status;endCH1_SEND : beginif (~ch1_busy && ch1_frame_rdempty)nxt_status <= CH0_SEND;else if (send_data_last)nxt_status <= CH0_SEND;else nxt_status <= cur_status;enddefault : nxt_status <= IDLE;endcase	end
endalways @(posedge clk) beginif (reset) beginsend_type      <= 0;send_length    <= 0;send_data_vld  <= 0;send_data_last <= 0;send_data      <= 0;endelse begincase(cur_status)IDLE : beginsend_type      <= 0;send_length    <= 0;send_data_vld  <= 0;send_data_last <= 0;send_data      <= 0;endCH0_SEND : beginif (ch0_frame_rden) beginsend_type   <= ch0_frame_dout[31:16];send_length <= ch0_frame_dout[15:0];endelse beginsend_type   <= send_type;send_length <= send_length;endif (ch0_data_rden) beginsend_data_vld  <= 1'b1;send_data_last <= ch0_data_dout[8];send_data      <= ch0_data_dout[7:0];endelse beginsend_data_vld  <= 0;send_data_last <= 0;send_data      <= 0;endendCH1_SEND : beginif (ch1_frame_rden) beginsend_type   <= ch1_frame_dout[31:16];send_length <= ch1_frame_dout[15:0];endelse beginsend_type   <= send_type;send_length <= send_length;endif (ch1_data_rden) beginsend_data_vld  <= 1'b1;send_data_last <= ch1_data_dout[8];send_data      <= ch1_data_dout[7:0];endelse beginsend_data_vld  <= 0;send_data_last <= 0;send_data      <= 0;end		enddefault : ;endcaseend
end/*--------------------------------------------------*\FIFO读使能设计
\*--------------------------------------------------*/
always @(posedge clk) beginif (reset) ch0_frame_rden <= 0;else if (cur_status == CH0_SEND && ~ch0_frame_rdempty && ~ch0_busy) ch0_frame_rden <= 1'b1;else ch0_frame_rden <= 0;
endalways @(posedge clk) beginif (reset) ch1_frame_rden <= 0;else if (cur_status == CH1_SEND && ~ch1_frame_rdempty && ~ch1_busy) ch1_frame_rden <= 1'b1;else ch1_frame_rden <= 0;
endalways @(posedge clk) beginif (reset) ch0_data_rden <= 0;else if (ch0_data_rden && ch0_data_dout[8]) ch0_data_rden <= 0;else if (ch0_frame_rden)ch0_data_rden <= 1'b1;else ch0_data_rden <= ch0_data_rden;
endalways @(posedge clk) beginif (reset) ch1_data_rden <= 0;else if (ch1_data_rden && ch1_data_dout[8]) ch1_data_rden <= 0;else if (ch1_frame_rden)ch1_data_rden <= 1'b1;else ch1_data_rden <= ch1_data_rden;
end/*--------------------------------------------------*\调试信号 
\*--------------------------------------------------*/
always @(posedge clk) beginif (reset) ch0_frame_fifo_err <= 0;else if (ch0_frame_wren && ch0_frame_wrfull) ch0_frame_fifo_err <= 1;else ch0_frame_fifo_err <= ch0_frame_fifo_err;
endalways @(posedge clk) beginif (reset) ch1_frame_fifo_err <= 0;else if (ch1_frame_wren && ch1_frame_wrfull) ch1_frame_fifo_err <= 1;else ch1_frame_fifo_err <= ch1_frame_fifo_err;
endalways @(posedge clk) beginif (reset) ch0_data_fifo_err <= 0;else if (ch0_data_wren && ch0_data_wrfull) ch0_data_fifo_err <= 1;else ch0_data_fifo_err <= ch0_data_fifo_err;
endalways @(posedge clk) beginif (reset) ch1_data_fifo_err <= 0;else if (ch1_data_wren && ch1_data_wrfull) ch1_data_fifo_err <= 1;else ch1_data_fifo_err <= ch1_data_fifo_err;
end/*--------------------------------------------------*\例化 
\*--------------------------------------------------*/
fifo_w9xd2048 ch0_data_fifo (.clk       (clk),                 // input wire clk.srst      (reset),               // input wire srst.din       (ch0_data_din),        // input wire [8 : 0] din.wr_en     (ch0_data_wren),       // input wire wr_en.rd_en     (ch0_data_rden),       // input wire rd_en.dout      (ch0_data_dout),       // output wire [8 : 0] dout.full      (ch0_data_wrfull),     // output wire full.empty     (ch0_data_rdempty),    // output wire empty.data_count(ch0_data_count)       // output wire [11 : 0] data_count
);fifo_w9xd2048 ch1_data_fifo (.clk       (clk),                 // input wire clk.srst      (reset),               // input wire srst.din       (ch1_data_din),        // input wire [8 : 0] din.wr_en     (ch1_data_wren),       // input wire wr_en.rd_en     (ch1_data_rden),       // input wire rd_en.dout      (ch1_data_dout),       // output wire [8 : 0] dout.full      (ch1_data_wrfull),     // output wire full.empty     (ch1_data_rdempty),    // output wire empty.data_count(ch1_data_count)       // output wire [11 : 0] data_count
);fifo_w32xd16 ch0_frame_fifo (.clk       (clk),                // input wire clk.srst      (reset),              // input wire srst.din       (ch0_frame_din),      // input wire [31 : 0] din.wr_en     (ch0_frame_wren),     // input wire wr_en.rd_en     (ch0_frame_rden),     // input wire rd_en.dout      (ch0_frame_dout),     // output wire [31 : 0] dout.full      (ch0_frame_wrfull),   // output wire full.empty     (ch0_frame_rdempty),  // output wire empty.data_count(ch0_frame_count)    // output wire [4 : 0] data_count
);fifo_w32xd16 ch1_frame_fifo (.clk       (clk),                // input wire clk.srst      (reset),              // input wire srst.din       (ch1_frame_din),      // input wire [31 : 0] din.wr_en     (ch1_frame_wren),     // input wire wr_en.rd_en     (ch1_frame_rden),     // input wire rd_en.dout      (ch1_frame_dout),     // output wire [31 : 0] dout.full      (ch1_frame_wrfull),   // output wire full.empty     (ch1_frame_rdempty),  // output wire empty.data_count(ch1_frame_count)    // output wire [4 : 0] data_count
);endmodule

编写测试:

`timescale 1ns / 1psmodule tb();parameter CH0_LENGTH = 256 ;parameter CH0_PERIOD = 300 ; parameter CH1_LENGTH = 256 ;parameter CH1_PERIOD = 300 ;reg          clk;reg          reset;wire         ch0_data_vld;wire         ch0_data_last;wire  [7:0]  ch0_data;wire         ch1_data_vld;wire         ch1_data_last;wire  [7:0]  ch1_data;wire  [15:0] send_type;wire  [15:0] send_length;wire         send_data_vld;wire         send_data_last;wire   [7:0] send_data	;initial beginclk = 0;forever #(10) clk = ~clk;endinitial beginreset = 1;#(2000) reset = 0;enddata_generate #(.LENGTH(CH0_LENGTH),.PERIOD(CH0_PERIOD)) data_generate_ch0 (.clk            (clk),.reset          (reset),.send_data_vld  (ch0_data_vld),.send_data_last (ch0_data_last),.send_data      (ch0_data));data_generate #(.LENGTH(CH1_LENGTH),.PERIOD(CH1_PERIOD)) data_generate_ch1 (.clk            (clk),.reset          (reset),.send_data_vld  (ch1_data_vld),.send_data_last (ch1_data_last),.send_data      (ch1_data));mux2_arbit mux2_arbit(.clk            (clk),.reset          (reset),.ch0_type       (16'h0001),.ch0_length     (CH0_LENGTH),.ch0_data_vld   (ch0_data_vld),.ch0_data_last  (ch0_data_last),.ch0_data       (ch0_data),.ch1_type       (16'h0002),.ch1_length     (CH1_LENGTH),.ch1_data_vld   (ch1_data_vld),.ch1_data_last  (ch1_data_last),.ch1_data       (ch1_data),.send_type      (send_type),.send_length    (send_length),.send_data_vld  (send_data_vld),.send_data_last (send_data_last),.send_data      (send_data));endmodule

仿真波形

这篇关于FPGA - 仲裁器的设计实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908010

相关文章

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Golang如何用gorm实现分页的功能

《Golang如何用gorm实现分页的功能》:本文主要介绍Golang如何用gorm实现分页的功能方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景go库下载初始化数据【1】建表【2】插入数据【3】查看数据4、代码示例【1】gorm结构体定义【2】分页结构体