从零开始写一个RTSP服务器(三)RTP传输H.264

2024-04-16 05:28

本文主要是介绍从零开始写一个RTSP服务器(三)RTP传输H.264,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、RTP封装
    • 1.1 RTP数据结构
    • 1.2 源码
  • 二、H.264的RTP打包
    • 2.1 H.264格式
    • 2.2 H.264的RTP打包方式
    • 2.3 H.264 RTP包的时间戳计算
    • 2.4 源码
  • 三、H.264 RTP打包的sdp描述
  • 四、测试

本篇文章目标,使用vlc打开sdp文件后,可以观看到视频数据

一、RTP封装

1.1 RTP数据结构

RTP包格式前面已经比较详细的介绍过,参考从零开始写一个RTSP服务器(一)不一样的RTSP协议讲解

看一张RTP头的格式图回忆一下

在这里插入图片描述
每个RTP包都包含这样一个RTP头部和RTP数据,为了方便,我将这个头部封装成一个结构体,还有发送包封装成一个函数,下面来看一看

RTP头结构体

/*
* 作者:_JT_
* 博客:https://blog.csdn.net/weixin_42462202
*/struct RtpHeader{/* byte 0 */uint8_t csrcLen:4;uint8_t extension:1;uint8_t padding:1;uint8_t version:2;/* byte 1 */uint8_t payloadType:7;uint8_t marker:1;/* bytes 2,3 */uint16_t seq;/* bytes 4-7 */uint32_t timestamp;/* bytes 8-11 */uint32_t ssrc;};

其中的:n是一种位表示法,这个结构体跟RTP的头部一一对应

RTP的发包函数
RTP包

struct RtpPacket
{struct RtpHeader rtpHeader;uint8_t payload[0];
};

这是我封装的一个RTP包,包含一个RTP头部和RTP载荷,uint8_t payload[0]并不占用空间,它表示rtp头部接下来紧跟着的地址,灵活数组成员 payload[0] 在结构体中的作用是为了实现动态长度的数组,动态长度的意思是数组的长度在运行时确定,而不是在编译时确定。

RTP的发包函数

/** 函数功能:发送RTP包* 参数 socket:表示本机的udp套接字* 参数 ip:表示目的ip地址* 参数 port:表示目的的端口号* 参数 rtpPacket:表示rtp包* 参数 dataSize:表示rtp包中载荷的大小* 放回值:发送字节数*/
int rtpSendPacket(int socket, char* ip, int16_t port, struct RtpPacket* rtpPacket, uint32_t dataSize)
{struct sockaddr_in addr;int ret;addr.sin_family = AF_INET;addr.sin_port = htons(port);addr.sin_addr.s_addr = inet_addr(ip);rtpPacket->rtpHeader.seq = htons(rtpPacket->rtpHeader.seq);rtpPacket->rtpHeader.timestamp = htonl(rtpPacket->rtpHeader.timestamp);rtpPacket->rtpHeader.ssrc = htonl(rtpPacket->rtpHeader.ssrc);ret = sendto(socket, (void*)rtpPacket, dataSize+RTP_HEADER_SIZE, 0,(struct sockaddr*)&addr, sizeof(addr));rtpPacket->rtpHeader.seq = ntohs(rtpPacket->rtpHeader.seq);rtpPacket->rtpHeader.timestamp = ntohl(rtpPacket->rtpHeader.timestamp);rtpPacket->rtpHeader.ssrc = ntohl(rtpPacket->rtpHeader.ssrc);return ret;
}

仔细看这个函数你应该可以看懂

我们设置好一个包之后,就会调用这个函数发送指定目标

这个函数中多处使用htons等函数,是因为RTP是采用网络字节序(大端模式),所以要将主机字节字节序转换为网络字节序

下面给出源码,rtp.hrtp.c,这两个文件在后面讲经常使用

1.2 源码

rtp.h

/** 作者:_JT_* 博客:https://blog.csdn.net/weixin_42462202*/#ifndef _RTP_H_
#define _RTP_H_
#include <stdint.h>#define RTP_VESION              2#define RTP_PAYLOAD_TYPE_H264   96
#define RTP_PAYLOAD_TYPE_AAC    97#define RTP_HEADER_SIZE         12
#define RTP_MAX_PKT_SIZE        1400/***    0                   1                   2                   3*    7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0*   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+*   |V=2|P|X|  CC   |M|     PT      |       sequence number         |*   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+*   |                           timestamp                           |*   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+*   |           synchronization source (SSRC) identifier            |*   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+*   |            contributing source (CSRC) identifiers             |*   :                             ....                              :*   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+**/
struct RtpHeader
{/* byte 0 */uint8_t csrcLen:4;uint8_t extension:1;uint8_t padding:1;uint8_t version:2;/* byte 1 */uint8_t payloadType:7;uint8_t marker:1;/* bytes 2,3 */uint16_t seq;/* bytes 4-7 */uint32_t timestamp;/* bytes 8-11 */uint32_t ssrc;
};struct RtpPacket
{struct RtpHeader rtpHeader;uint8_t payload[0];
};void rtpHeaderInit(struct RtpPacket* rtpPacket, uint8_t csrcLen, uint8_t extension,uint8_t padding, uint8_t version, uint8_t payloadType, uint8_t marker,uint16_t seq, uint32_t timestamp, uint32_t ssrc);
int rtpSendPacket(int socket, char* ip, int16_t port, struct RtpPacket* rtpPacket, uint32_t dataSize);#endif //_RTP_H_

rtp.c

/** 作者:_JT_* 博客:https://blog.csdn.net/weixin_42462202*/#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <arpa/inet.h>#include "rtp.h"void rtpHeaderInit(struct RtpPacket* rtpPacket, uint8_t csrcLen, uint8_t extension,uint8_t padding, uint8_t version, uint8_t payloadType, uint8_t marker,uint16_t seq, uint32_t timestamp, uint32_t ssrc)
{rtpPacket->rtpHeader.csrcLen = csrcLen;rtpPacket->rtpHeader.extension = extension;rtpPacket->rtpHeader.padding = padding;rtpPacket->rtpHeader.version = version;rtpPacket->rtpHeader.payloadType =  payloadType;rtpPacket->rtpHeader.marker = marker;rtpPacket->rtpHeader.seq = seq;rtpPacket->rtpHeader.timestamp = timestamp;rtpPacket->rtpHeader.ssrc = ssrc;
}int rtpSendPacket(int socket, char* ip, int16_t port, struct RtpPacket* rtpPacket, uint32_t dataSize)
{struct sockaddr_in addr;int ret;addr.sin_family = AF_INET;addr.sin_port = htons(port);addr.sin_addr.s_addr = inet_addr(ip);rtpPacket->rtpHeader.seq = htons(rtpPacket->rtpHeader.seq);rtpPacket->rtpHeader.timestamp = htonl(rtpPacket->rtpHeader.timestamp);rtpPacket->rtpHeader.ssrc = htonl(rtpPacket->rtpHeader.ssrc);ret = sendto(socket, (void*)rtpPacket, dataSize+RTP_HEADER_SIZE, 0,(struct sockaddr*)&addr, sizeof(addr));rtpPacket->rtpHeader.seq = ntohs(rtpPacket->rtpHeader.seq);rtpPacket->rtpHeader.timestamp = ntohl(rtpPacket->rtpHeader.timestamp);rtpPacket->rtpHeader.ssrc = ntohl(rtpPacket->rtpHeader.ssrc);return ret;
}

二、H.264的RTP打包

2.1 H.264格式

H.264由一个一个的NALU组成,每个NALU之间使用00 00 00 0100 00 01分隔开

每个NALU的第一次字节都有特殊的含义,其内容如下

在这里插入图片描述
好,对于H.264格式了解这么多就够了,我们的目的是想从一个H.264的文件中将一个一个的NALU提取出来,然后封装成RTP包,下面介绍如何将NALU封装成RTP包

2.2 H.264的RTP打包方式

H.264可以由三种RTP打包方式

单NALU打包

一个RTP包包含一个完整的NALU

聚合打包

对于较小的NALU,一个RTP包可包含多个完整的NALU

分片打包

对于较大的NALU,一个NALU可以分为多个RTP包发送

注意:这里要区分好概念,每一个RTP包都包含一个RTP头部和RTP荷载,这是固定的。而H.264发送数据可支持三种RTP打包方式

比较常用的是单NALU打包分片打包,本文也只介绍这两种

单NALU打包
所谓单NALU打包就是将一整个NALU的数据放入RTP包的载荷中

这是最简单的一种方式,无需过多的讲解

分片打包
每个RTP包都有大小限制的,因为RTP一般都是使用UDP发送,UDP没有流量控制,所以要限制每一次发送的大小,所以如果一个NALU的太大,就需要分成多个RTP包发送,如何分成多个RTP包,下面来好好讲一讲

首先要明确,RTP包的格式是绝不会变的,永远多是RTP头+RTP载荷
在这里插入图片描述
RTP头部是固定的,那么只能在RTP载荷中去添加额外信息来说明这个RTP包是表示同一个NALU

如果是分片打包的话,那么在RTP载荷开始有两个字节的信息,然后再是NALU的内容

在这里插入图片描述
第一个字节位FU Indicator,其格式如下
在这里插入图片描述
高三位(0 1 2):与NALU第一个字节的高三位相同

Type:28,表示该RTP包一个分片,为什么是28?因为H.264的规范中定义的,此外还有许多其他Type,这里不详讲,代码表示方式如下:

 rtpPacket->payload[0] = (naluType & 0x60) | 28;

第二个字节位FU Header,其格式如下
在这里插入图片描述
S:标记该分片打包的第一个RTP包,只有第一个包的最高位被置1

E:比较该分片打包的最后一个RTP包,最后一个包第二高位被置1

Type:NALU的Type

代码表示如下:

rtpPacket->payload[1] = naluType & 0x1F;if (i == 0) //第一包数据rtpPacket->payload[1] |= 0x80; // start
else if (remainPktSize == 0 && i == pktNum - 1) //最后一包数据rtpPacket->payload[1] |= 0x40; // end

2.3 H.264 RTP包的时间戳计算

RTP包的时间戳起始值是随机的

RTP包的时间戳增量怎么计算?

假设时钟频率为90000,帧率为25

频率为90000表示一秒用90000点来表示

帧率为25,那么一帧就是1/25秒

所以一帧有90000*(1/25)=3600个点来表示

因此每一帧数据的时间增量为3600

2.4 源码

rtp_h264.c
这里给出rtp发送H.264的源码

/** 作者:_JT_* 博客:https://blog.csdn.net/weixin_42462202* 注释添加:call_me_wangcheng*/#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>#include "rtp.h"#define H264_FILE_NAME  "test.h264"
#define CLIENT_IP       "127.0.0.1" //运行可执行程序设备的IP地址(可执行程序就是这个编译后的程序)
#define CLIENT_PORT     9832        //端口号#define FPS             25static inline int startCode3(char* buf)
{if(buf[0] == 0 && buf[1] == 0 && buf[2] == 1)return 1;elsereturn 0;
}static inline int startCode4(char* buf)
{if(buf[0] == 0 && buf[1] == 0 && buf[2] == 0 && buf[3] == 1)return 1;elsereturn 0;
}static char* findNextStartCode(char* buf, int len)
{int i;if(len < 3)return NULL;for(i = 0; i < len-3; ++i){if(startCode3(buf) || startCode4(buf))return buf;++buf;}if(startCode3(buf))return buf;return NULL;
}static int getFrameFromH264File(int fd, char* frame, int size)
{int rSize, frameSize;char* nextStartCode;if(fd < 0)return fd;rSize = read(fd, frame, size);if(!startCode3(frame) && !startCode4(frame))return -1;nextStartCode = findNextStartCode(frame+3, rSize-3);if(!nextStartCode){lseek(fd, 0, SEEK_SET);frameSize = rSize;}else{frameSize = (nextStartCode-frame);lseek(fd, frameSize-rSize, SEEK_CUR);}return frameSize;
}static int createUdpSocket()
{int fd;int on = 1;fd = socket(AF_INET, SOCK_DGRAM, 0);if(fd < 0)return -1;setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char*)&on, sizeof(on));return fd;
}static int rtpSendH264Frame(int socket, char* ip, int16_t port,struct RtpPacket* rtpPacket, uint8_t* frame, uint32_t frameSize)
{uint8_t naluType; // nalu第一个字节int sendBytes = 0;int ret;naluType = frame[0];if (frameSize <= RTP_MAX_PKT_SIZE) // nalu长度小于最大包场:单一NALU单元模式{/**   0 1 2 3 4 5 6 7 8 9*  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+*  |F|NRI|  Type   | a single NAL unit ... |*  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+*/memcpy(rtpPacket->payload, frame, frameSize);ret = rtpSendPacket(socket, ip, port, rtpPacket, frameSize);if(ret < 0)return -1;rtpPacket->rtpHeader.seq++;sendBytes += ret;if ((naluType & 0x1F) == 7 || (naluType & 0x1F) == 8) // 如果是SPS、PPS就不需要加时间戳goto out;}else // nalu长度小于最大包场:分片模式{/**  0                   1                   2*  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+* | FU indicator  |   FU header   |   FU payload   ...  |* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+*//**     FU Indicator*    0 1 2 3 4 5 6 7*   +-+-+-+-+-+-+-+-+*   |F|NRI|  Type   |*   +---------------+*//**      FU Header*    0 1 2 3 4 5 6 7*   +-+-+-+-+-+-+-+-+*   |S|E|R|  Type   |*   +---------------+*/int pktNum = frameSize / RTP_MAX_PKT_SIZE;       // 有几个完整的包int remainPktSize = frameSize % RTP_MAX_PKT_SIZE; // 剩余不完整包的大小int i, pos = 1;/* 发送完整的包 */for (i = 0; i < pktNum; i++){rtpPacket->payload[0] = (naluType & 0x60) | 28;rtpPacket->payload[1] = naluType & 0x1F;if (i == 0) //第一包数据rtpPacket->payload[1] |= 0x80; // startelse if (remainPktSize == 0 && i == pktNum - 1) //最后一包数据rtpPacket->payload[1] |= 0x40; // end//因为payload[1]已经包含了nalu_type,所以frame的地址需要加一,因为分隔符后的第一个字节表示nalu_typememcpy(rtpPacket->payload+2, frame+pos, RTP_MAX_PKT_SIZE);ret = rtpSendPacket(socket, ip, port, rtpPacket, RTP_MAX_PKT_SIZE+2);if(ret < 0)return -1;rtpPacket->rtpHeader.seq++;sendBytes += ret;pos += RTP_MAX_PKT_SIZE;}/* 发送剩余的数据 */if (remainPktSize > 0){rtpPacket->payload[0] = (naluType & 0x60) | 28;rtpPacket->payload[1] = naluType & 0x1F;rtpPacket->payload[1] |= 0x40; //end//原博主提供的代码这里进行了+2操作,按照我的理解-1都行,有懂得,在评论区教教我memcpy(rtpPacket->payload+2, frame+pos, remainPktSize+2);ret = rtpSendPacket(socket, ip, port, rtpPacket, remainPktSize+2);if(ret < 0)return -1;rtpPacket->rtpHeader.seq++;sendBytes += ret;}}out:return sendBytes;
}int main(int argc, char* argv[])
{int socket;int fd;int fps = 25;int startCode;struct RtpPacket* rtpPacket;uint8_t* frame;uint32_t frameSize;fd = open(H264_FILE_NAME, O_RDONLY);if(fd < 0){printf("failed to open %s\n", H264_FILE_NAME);return -1;}socket = createUdpSocket();if(socket < 0){printf("failed to create socket\n");return -1;}rtpPacket = (struct RtpPacket*)malloc(500000);frame = (uint8_t*)malloc(500000);rtpHeaderInit(rtpPacket, 0, 0, 0, RTP_VESION, RTP_PAYLOAD_TYPE_H264, 0,0, 0, 0x88923423);while(1){frameSize = getFrameFromH264File(fd, frame, 500000);if(frameSize < 0){printf("read err\n");continue;}if(startCode3(frame))startCode = 3;elsestartCode = 4;frameSize -= startCode;rtpSendH264Frame(socket, CLIENT_IP, CLIENT_PORT,rtpPacket, frame+startCode, frameSize);rtpPacket->rtpHeader.timestamp += 90000/FPS;usleep(1000*1000/fps);}free(rtpPacket);free(frame);return 0;
}

三、H.264 RTP打包的sdp描述

sdp文件有什么用?

sdp描述着媒体信息,当使用vlc打开这个sdp文件后,会根据这些信息做相应的操作(创建套接字…),然后等待接收RTP包

这里给出RTP打包H.264的sdp文件,并描述每一行是什么意思

m=video 9832 RTP/AVP 96 
a=rtpmap:96 H264/90000
a=framerate:25
c=IN IP4 127.0.0.1

这个一个媒体级的sdp描述,关于sdp文件描述详情可看从零开始写一个RTSP服务器(一)不一样的RTSP协议讲解

m=video 9832 RTP/AVP 96

格式为 m=<媒体类型> <端口号> <传输协议> <媒体格式 >
媒体类型:video,表示这是一个视频流

端口号:9832,表示UDP发送的目的端口为9832

传输协议:RTP/AVP,表示RTP OVER UDP,通过UDP发送RTP包

媒体格式:表示负载类型(payload type),一般使用96表示H.264

a=rtpmap:96 H264/90000

格式为a=rtpmap:<媒体格式><编码格式>/<时钟频率>

a=framerate:25

表示帧率

c=IN IP4 127.0.0.1

IN:表示internet

IP4:表示IPV4

127.0.0.1:表示UDP发送的目的地址为127.0.0.1

特别注意:这段sdp文件描述的udp发送的目的IP为127.0.0.1,目的端口为9832

四、测试

讲上面给出的源码rtp.c、rtp.h、rtp_h264.c保存下来,然后编译运行

注意:该程序默认打开的是test.h264,如果你没有视频源,可以从RtspServer的example目录下获取

gcc rtp.c rtp_h264.c
./a.out

讲上面的sdp文件保存为rtp_h264.sdp,使用vlc打开,即可观看到视频

运行效果
在这里插入图片描述
至此,我们已经完成了RTSP协议交互和RTP打包H.264,下一篇文章就可以来实现一个播放H.264的RTSP服务器了

原文链接:http://t.csdnimg.cn/svr1b

这篇关于从零开始写一个RTSP服务器(三)RTP传输H.264的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907898

相关文章

hevc和H.264格式的区别

HEVC(High Efficiency Video Coding)和H.264(也称为Advanced Video Coding,AVC)都是视频压缩标准,但它们之间存在一些显著的区别,主要集中在压缩效率、资源需求和兼容性方面。 压缩效率 HEVC,也被称为H.265,提供了比H.264更高的压缩效率。这意味着在相同的视频质量下,HEVC能够以大约一半的比特率进行编码,从而减少存储空间需求和

2024.6.24 IDEA中文乱码问题(服务器 控制台 TOMcat)实测已解决

1.问题产生原因: 1.文件编码不一致:如果文件的编码方式与IDEA设置的编码方式不一致,就会产生乱码。确保文件和IDEA使用相同的编码,通常是UTF-8。2.IDEA设置问题:检查IDEA的全局编码设置和项目编码设置是否正确。3.终端或控制台编码问题:如果你在终端或控制台看到乱码,可能是终端的编码设置问题。确保终端使用的是支持你的文件的编码方式。 2.解决方案: 1.File -> S

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

【服务器运维】MySQL数据存储至数据盘

查看磁盘及分区 [root@MySQL tmp]# fdisk -lDisk /dev/sda: 21.5 GB, 21474836480 bytes255 heads, 63 sectors/track, 2610 cylindersUnits = cylinders of 16065 * 512 = 8225280 bytesSector size (logical/physical)

【服务器运维】CentOS6 minimal 离线安装MySQL5.7

1.准备安装包(版本因人而异,所以下面的命令中版本省略,实际操作中用Tab自动补全就好了) cloog-ppl-0.15.7-1.2.el6.x86_64.rpmcpp-4.4.7-23.el6.x86_64.rpmgcc-4.4.7-23.el6.x86_64.rpmgcc-c++-4.4.7-23.el6.x86_64.rpmglibc-2.12-1.212.el6.x86_64.r

【服务器运维】CentOS7 minimal 离线安装 gcc perl vmware-tools

0. 本机在有网的情况下,下载CentOS镜像 https://www.centos.org/download/ 1. 取出rpm 有的情况可能不需要net-tools,但是如果出现跟ifconfig相关的错误,就把它安装上。另外如果不想升级内核版本的话,就找对应内核版本的rpm版本安装 perl-Time-Local-1.2300-2.el7.noarch.rpmperl-Tim

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

SQL Server中,always on服务器的相关操作

在SQL Server中,建立了always on服务,可用于数据库的同步备份,当数据库出现问题后,always on服务会自动切换主从服务器。 例如192.168.1.10为主服务器,12为从服务器,当主服务器出现问题后,always on自动将主服务器切换为12,保证数据库正常访问。 对于always on服务器有如下操作: 1、切换主从服务器:假如需要手动切换主从服务器时(如果两个服务

时间服务器中,适用于国内的 NTP 服务器地址,可用于时间同步或 Android 加速 GPS 定位

NTP 是什么?   NTP 是网络时间协议(Network Time Protocol),它用来同步网络设备【如计算机、手机】的时间的协议。 NTP 实现什么目的?   目的很简单,就是为了提供准确时间。因为我们的手表、设备等,经常会时间跑着跑着就有误差,或快或慢的少几秒,时间长了甚至误差过分钟。 NTP 服务器列表 最常见、熟知的就是 www.pool.ntp.org/zo

在服务器上浏览图片

@StarSky 2018-10-26 15:09 字数 15971 阅读 28 https://www.zybuluo.com/StarSky/note/1294871 来源 2018-09-27 线上服务器安装 imgcat Tool   2018-09-27 线上服务器安装 imgcat 0. 准备文件:iterm2_shell_integration.bash1. 在有权限