CF1341D. Nastya and Scoreboard(DP)

2024-04-16 01:18
文章标签 dp scoreboard nastya cf1341d

本文主要是介绍CF1341D. Nastya and Scoreboard(DP),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Denis, after buying flowers and sweets (you will learn about this story in the next task), went to a date with Nastya to ask her to become a couple. Now, they are sitting in the cafe and finally… Denis asks her to be together, but … Nastya doesn’t give any answer.

The poor boy was very upset because of that. He was so sad that he punched some kind of scoreboard with numbers. The numbers are displayed in the same way as on an electronic clock: each digit position consists of 7 segments, which can be turned on or off to display different numbers. The picture shows how all 10 decimal digits are displayed:

After the punch, some segments stopped working, that is, some segments might stop glowing if they glowed earlier. But Denis remembered how many sticks were glowing and how many are glowing now. Denis broke exactly 𝑘 segments and he knows which sticks are working now. Denis came up with the question: what is the maximum possible number that can appear on the board if you turn on exactly 𝑘 sticks (which are off now)?

It is allowed that the number includes leading zeros.

Input
The first line contains integer 𝑛 (1≤𝑛≤2000) — the number of digits on scoreboard and 𝑘 (0≤𝑘≤2000) — the number of segments that stopped working.

The next 𝑛 lines contain one binary string of length 7, the 𝑖-th of which encodes the 𝑖-th digit of the scoreboard.

Each digit on the scoreboard consists of 7 segments. We number them, as in the picture below, and let the 𝑖-th place of the binary string be 0 if the 𝑖-th stick is not glowing and 1 if it is glowing. Then a binary string of length 7 will specify which segments are glowing now.

Thus, the sequences “1110111”, “0010010”, “1011101”, “1011011”, “0111010”, “1101011”, “1101111”, “1010010”, “1111111”, “1111011” encode in sequence all digits from 0 to 9 inclusive.

Output
Output a single number consisting of 𝑛 digits — the maximum number that can be obtained if you turn on exactly 𝑘 sticks or −1, if it is impossible to turn on exactly 𝑘 sticks so that a correct number appears on the scoreboard digits.

Examples
inputCopy
1 7
0000000
outputCopy
8
inputCopy
2 5
0010010
0010010
outputCopy
97
inputCopy
3 5
0100001
1001001
1010011
outputCopy
-1
Note
In the first test, we are obliged to include all 7 sticks and get one 8 digit on the scoreboard.

In the second test, we have sticks turned on so that units are formed. For 5 of additionally included sticks, you can get the numbers 07, 18, 34, 43, 70, 79, 81 and 97, of which we choose the maximum — 97.

In the third test, it is impossible to turn on exactly 5 sticks so that a sequence of numbers appears on the scoreboard.

题意:
每个数字由一定的棍子组成,给出初始每个位置的棍子组成。
再给你 k k k个额外棍子,求最后组成的最大数。

思路:
将数组反转一下。
定义 d p [ i ] [ j ] dp[i][j] dp[i][j]为对于前 i i i个位置,使用了 j j j个额外棍子能否组成数。转移过程记录状态。
最后输出结果的时候,尽量从大的数组往前找。复杂度是 10 ∗ n ∗ k 10 * n * k 10nk

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <set>
#include <queue>
#include <map>
#include <string>
#include <iostream>using namespace std;
typedef long long ll;const int maxn = 2005;int f[maxn][maxn],pre[maxn][maxn];
string s[10] = {"1110111", "0010010", "1011101", "1011011", "0111010", "1101011", "1101111", "1010010", "1111111", "1111011"};
string a[maxn];
int c[maxn][maxn];bool check(string x) {for(int i = 0;i <= 9;i++) {int flag = 1;for(int j = 0;j <= 6;j++) {if(x[j] == '1' && s[i][j] == '0') {flag = 0;break;}}if(flag) return true;}return false;
}int dis(string x,string y) {int num = 0;for(int j = 0;j <= 6;j++) {if(x[j] == '1' && y[j] == '0') {return -1;}else if(x[j] == '0' && y[j] == '1') {num++;}}return num;
}int main() {int n,k;scanf("%d%d",&n,&k);memset(f,-1,sizeof(f));int flag = 1;for(int i = 1;i <= n;i++) {cin >> a[i];flag = check(a[i]);}if(!flag) {printf("-1\n");return 0;}reverse(a + 1,a + 1 + n);f[0][0] = 1;for(int i = 1;i <= n;i++) {for(int j = 0;j <= 9;j++) {c[i][j] = dis(a[i],s[j]);}}for(int i = 1;i <= n;i++) {for(int j = 0;j <= k;j++) {for(int q = 0;q <= 9;q++) {int d = c[i][q];if(d == -1) continue;if(j < d) continue;if(f[i - 1][j - d] != -1) {f[i][j] = 1;pre[i][j] = q;}}}}
//    printf("%d %d\n",dis(a[3],s[0]),dis(a[2],s[0]));if(f[n][k] == -1) {printf("-1\n");return 0;}int num = k;for(int i = n;i >= 1;i--) {int x = pre[i][num];int d = dis(a[i],s[x]);num -= d;printf("%d",x);}return 0;
}

这篇关于CF1341D. Nastya and Scoreboard(DP)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907442

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int