P4766 [CERC2014]Outer space invaders(区间dp)

2024-04-16 01:08

本文主要是介绍P4766 [CERC2014]Outer space invaders(区间dp),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:
题目描述 来自外太空的外星人(最终)入侵了地球。保卫自己,或者解体,被他们同化,或者成为食物。迄今为止,我们无法确定。

外星人遵循已知的攻击模式。有N个外星人进攻,第i个进攻的外星人会在时间ai出现,距离你的距离为d i ,它必须在时间b i 前被消灭,否则被消灭的会是你。

你的武器是一个区域冲击波器,可以设置任何给定的功率。如果被设置了功率R,它会瞬间摧毁与你的距离在R以内的所有外星人(可以等于),同时它也会消耗R单位的燃料电池。

求摧毁所有外星人的最低成本(消耗多少燃料电池),同时保证自己的生命安全。

输入输出格式 输入格式:

第一行输入一个数T,表示有T组数据

每组数据的第一行为外星人的数量n(1<=n<=300)

接下来n+1行,每行有三个数ai,bi,di,表示这个外星人在时间ai出现,距离你di,在bi前时刻死亡

输出格式:

每组输出摧毁所有外星人的最低成本

Translated by @xzx_vyt

思路:
有两个显然的结论:

  1. 选择的点均可以在端点上
  2. 每个时间段内最远的外星人,必须在其时间范围内单独攻击。

对于结论1,如果当前的点不在端点上,那么你往前移往后移都不会影响其攻击到的外星人,于是将其一直移动到端点上就行了。

定义 f [ i ] [ j ] f[i][j] f[i][j]代表消灭时间范围在 [ i , j ] [i,j] [i,j]内的外星人需要的最低成本。
由结论1,我们只需要考虑端点,所以离散化就好了。
由结论2,每轮我们优先攻击时间范围内最远的外星人,剩下的部分在单独攻击。因为当前的这个最远外星人,现在不攻击,那么你划分完区间后还要在子区间攻击,子区间再攻击,结果肯定不会更优,所以只需要考虑每轮最远的外星人即可。

转移就是 f [ i ] [ j ] = m i n ( f [ i ] [ j ] , f [ i ] [ k − 1 ] + f [ k + 1 ] [ j ] + a [ i d ] . d ) f[i][j]=min(f[i][j],f[i][k-1]+f[k+1][j]+a[id].d) f[i][j]=min(f[i][j],f[i][k1]+f[k+1][j]+a[id].d)
但是注意,当 k = i k=i k=i的时候,可能会出现问题。解决办法是定义 f [ i ] [ i − 1 ] f[i][i-1] f[i][i1]为0,或者定义 f [ i ] [ j ] f[i][j] f[i][j]为消灭时间范围 ( i , j ) (i,j) (i,j)内外星人最低成本,改为开区间。

很多题解没有考虑这个地方,在n=1的时候输出的结果都是INF,明显错误了。

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <map>using namespace std;
typedef long long ll;const int maxn = 605;
const int INF = 0x3f3f3f3f;struct Node {int a,d,b;
}a[maxn];int num[maxn],cnt,f[maxn][maxn];void init() {sort(num + 1,num + 1 + cnt);cnt = unique(num + 1,num + 1 + cnt) - (num + 1);
}int Find(int x) {return lower_bound(num + 1,num + 1 + cnt,x) - num;
}int main() {int T;scanf("%d",&T);while(T--) {int n;scanf("%d",&n);cnt = 0;memset(f,0x3f,sizeof(f));for(int i = 1;i <= n;i++) {scanf("%d%d%d",&a[i].a,&a[i].b,&a[i].d);num[++cnt] = a[i].a;num[++cnt] = a[i].b;f[i][i - 1] = f[i + 1][i] = 0;}init();for(int i = 1;i <= n;i++) {a[i].a = Find(a[i].a);a[i].b = Find(a[i].b);}for(int len = 1;len <= cnt;len++) {for(int i = 1;i + len - 1 <= cnt;i++) {int j = i + len - 1;int id = 0;for(int k = 1;k <= n;k++) {if(a[k].b <= j && a[k].a >= i && a[id].d < a[k].d) {id = k;}}if(!id) {f[i][j] = 0;continue;}for(int k = a[id].a;k <= a[id].b;k++) {f[i][j] = min(f[i][j],f[i][k - 1] + a[id].d + f[k + 1][j]);}}}printf("%d\n",f[1][cnt]);}return 0;
}

这篇关于P4766 [CERC2014]Outer space invaders(区间dp)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907415

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o