Codeforces 383 D. Antimatter(DP)

2024-04-15 23:58
文章标签 dp codeforces 383 antimatter

本文主要是介绍Codeforces 383 D. Antimatter(DP),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Iahub accidentally discovered a secret lab. He found there n devices ordered in a line, numbered from 1 to n from left to right. Each device i (1 ≤ i ≤ n) can create either ai units of matter or ai units of antimatter.

Iahub wants to choose some contiguous subarray of devices in the lab, specify the production mode for each of them (produce matter or antimatter) and finally take a photo of it. However he will be successful only if the amounts of matter and antimatter produced in the selected subarray will be the same (otherwise there would be overflowing matter or antimatter in the photo).

You are requested to compute the number of different ways Iahub can successful take a photo. A photo is different than another if it represents another subarray, or if at least one device of the subarray is set to produce matter in one of the photos and antimatter in the other one.

Input
The first line contains an integer n (1 ≤ n ≤ 1000). The second line contains n integers a1, a2, …, an (1 ≤ ai ≤ 1000).

The sum a1 + a2 + … + an will be less than or equal to 10000.

Output
Output a single integer, the number of ways Iahub can take a photo, modulo 1000000007 (109 + 7).

Examples
inputCopy
4
1 1 1 1
outputCopy
12
Note
The possible photos are [1+, 2-], [1-, 2+], [2+, 3-], [2-, 3+], [3+, 4-], [3-, 4+], [1+, 2+, 3-, 4-], [1+, 2-, 3+, 4-], [1+, 2-, 3-, 4+], [1-, 2+, 3+, 4-], [1-, 2+, 3-, 4+] and [1-, 2-, 3+, 4+], where “i+” means that the i-th element produces matter, and “i-” means that the i-th element produces antimatter.

题意:
取一段连续数,每个数可以是原数也可以是其相反数。求多少种取法使得所取的和为0。

思路:
定义 d p [ i ] [ j + 10000 ] dp[i][j+10000] dp[i][j+10000]为前 i i i个数后缀和为 j j j的方案数。
因为可能出现负数,所以要加上10000以免出现负数,
转移那就更简单了,要么取前面的后缀,要么不取,所以是:
d p [ i ] [ a [ i ] + 10000 ] = 1 , d p [ i ] [ − a [ i ] + 10000 ] = 1 dp[i][a[i]+10000]=1,dp[i][-a[i]+10000]=1 dp[i][a[i]+10000]=1dp[i][a[i]+10000]=1
d p [ i ] [ j + a [ i ] + 10000 ] + = d p [ i ] [ j + 10000 ] dp[i][j+a[i]+10000]+=dp[i][j+10000] dp[i][j+a[i]+10000]+=dp[i][j+10000]
d p [ i ] [ j − a [ i ] + 10000 ] + = d p [ i ] [ j + 10000 ] dp[i][j-a[i]+10000]+=dp[i][j+10000] dp[i][ja[i]+10000]+=dp[i][j+10000]

感觉这种DP套路题做的多了还是很水。贪心就不一样了,随便想的的A了,感觉是对的反而过不了巴拉巴拉。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>using namespace std;typedef long long ll;
const int maxn = 1e4 + 7;
const int mod = 1e9 + 7;ll dp[1005][maxn * 2];
int a[1005];int main() {int n;scanf("%d",&n);for(int i = 1;i <= n;i++) scanf("%d",&a[i]);ll ans = 0;for(int i = 1;i <= n;i++) {for(int j = -10000;j + a[i] <= 10000;j++) {int num1 = j + a[i] + 10000,num2 = j + 10000;dp[i][num1] = (dp[i][num1] + dp[i - 1][num2]) % mod;}for(int j = 10000;j - a[i] >= -10000;j--) {int num1 = j - a[i] + 10000,num2 = j + 10000;dp[i][num1] = (dp[i][num1] + dp[i - 1][num2]) % mod;}dp[i][a[i] + 10000] = (dp[i][a[i] + 10000] + 1) % mod;dp[i][-a[i] + 10000] = (dp[i][-a[i] + 10000] + 1) % mod;ans = (ans + dp[i][10000]) % mod;}printf("%lld\n",ans);return 0;
}

这篇关于Codeforces 383 D. Antimatter(DP)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907282

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int