2024年MathorCup数学应用挑战赛C题思路分析(妈妈杯)

2024-04-15 12:44

本文主要是介绍2024年MathorCup数学应用挑战赛C题思路分析(妈妈杯),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024年第十四届MathorCup数学应用挑战赛C题解析

文章目录

  • 题目概览
    • 第一问:货量预测
    • 第二问:运输线路变化的预测
    • 第三问:单目标优化
    • 第四问:排班计划的优化
  • MATLAB代码框架
    • 货量预测
    • 人员排班

2024年的MathorCup数学应用挑战赛再次为我们带来了富有挑战性的题目。今年的C题聚焦于物流网络中的货量预测和人员排版优化问题。本文提供一个简单易懂的解析,帮助您把握解题的关键思路。
请添加图片描述

题目概览

C题分为四个部分,前两部分关注于预测,后两部分则是优化问题。

预测问题:要求我们预测物流网络中各分拣中心的货量。这里需要注意的是,预测不仅仅是基于历史数据,还需要考虑运输线路的变化对货量的影响。
优化问题:在预测的基础上,我们需要解决如何合理安排人员,以最低的成本完成分拣工作。

第一问:货量预测

在这里插入图片描述

对于第一问,我们可以选择多种预测模型。由于时间序列模型适合分析货物量随时间变化的趋势,我们可以考虑使用自回归整合滑动平均模型(ARIMA)或指数平滑模型。如果希望尝试较新的预测方法,可以考虑神经网络模型,但需要注意其复杂性。

在进行预测时,我们应该注意到11月2号和11月11号附近货物量的急速增加(由于双十一促销活动),并相应地处理这些异常值,以避免预测出现较大偏差。

第二问:运输线路变化的预测

在这里插入图片描述

当网络运输线路发生变化时,我们需要重新考虑预测模型。这里的关键点是,分拣中心的货量是由其上游的始发分拣中心决定的。我们需要为模型添加一个偏置项来适应线路变化的影响。

例如,如果SC10的某个始发中心SC61在未来30天内被取消,我们需要根据这一变化调整预测模型,增加一个相应的偏置权重。

第三问:单目标优化

在这里插入图片描述

第三问要求我们在完成工作的基础上,尽可能减少人员成本。我们需要考虑正式工和临时工的使用,并根据班次和人员花费的基本信息来构造约束条件和目标方程。

这里的目标是最小化安排的人数。我们首先应该使用正式工,然后尽可能少地使用临时工。通过将一天的工作时间拆分为九个区间,并根据预测的货物量来计算每个区间所需的人员数量,我们可以构建出一个单目标规划问题。

第四问:排班计划的优化

在这里插入图片描述

在第四问中,我们需要在已确定的班次人员数量条件下,制定合理的排班计划。这涉及到排列组合问题,我们需要在满足工作需求的同时,避免一人连续工作七天的情况。

MATLAB代码框架

货量预测

% 假设您已经有了历史货量数据,存储在名为data的变量中
data = [/* 货量历史数据 */];% 时间序列分析 - ARIMA模型示例
% 首先,对数据进行差分以使其平稳
differenced_data = diff(data, 1);% 然后,使用autocorr和pac functions找到合适的AR参数
% 这里只是一个示例,实际参数需要根据数据进行调整
[acf, lags] = autocorr(differenced_data);
pacf, lagsPACF = pacf(differenced_data, 20);% 使用ARIMA模型进行拟合
model = arima('ARLags',1,'D',1,'MALags',1);
[fit,~,logL] = estimate(model,differenced_data);% 进行预测
numPeriods = 12; % 预测未来12个时间段的货量
[predY,~,~] = forecast(fit,numPeriods);% 反差分以获得原始尺度的预测值
predicted_data = cumsum(predY) + cumsum(data(end,1:-1:end-1));

人员排班

% 假设您已经预测了未来货量的数组,存储在名为predicted_cargo的变量中
predicted_cargo = [/* 预测的货量数据 */];% 定义班次和人员需求
shifts = [/* 班次时间段,例如早班、中班、晚班 */];
staff_needed_per_shift = [/* 每个班次所需的最少人员数 */];% 线性规划示例
% 定义决策变量,x(i,j)表示第i个班次安排的第j个人
model = optimproblem('Objective', 'Minimize', 'x');
model.Objective = sum(staff_needed_per_shift .* x);% 添加约束条件,确保每个班次的人员需求得到满足
for i = 1:length(shifts)model.Constraints.(['shift_' num2str(i)]) = sum(x(i,:)) >= staff_needed_per_shift(i);
end% 每个人员不能同时在多个班次工作
for j = 1:length(staff)model.Constraints.(['staff_' num2str(j)]) = sum(x(:,j)) <= 1;
end% 求解线性规划问题
opts = optimoptions('intlinprog','Display','off');
[x,fval,exitflag,output] = intlinprog(staff_needed_per_shift, ...A, ...b, ...Aeq, ...beq, ...lb, ...ub, ...opts);% 输出排班结果
staff_assignments = reshape(x, length(staff), length(shifts));
disp(staff_assignments);

这篇关于2024年MathorCup数学应用挑战赛C题思路分析(妈妈杯)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905848

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像