基于Python实践感知器分类算法

2024-04-15 02:58

本文主要是介绍基于Python实践感知器分类算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       【翻译自: Perceptron Algorithm for Classification in Python】

      【说明:Jason Brownlee PhD大神的文章个人很喜欢,所以闲暇时间里会做一点翻译和学习实践的工作,这里是相应工作的实践记录,希望能帮到有需要的人!】

  Perceptron是用于二进制分类任务的线性机器学习算法。它可以被认为是人工神经网络的第一种和最简单的类型之一。 绝对不是“深度”学习,而是重要的组成部分。与逻辑回归相似,它可以快速学习两类分类任务在特征空间中的线性分离,尽管与逻辑回归不同,它使用随机梯度下降优化算法学习并且不预测校准概率。

     在本教程中,您将发现Perceptron分类机器学习算法。完成本教程后,您将知道:

Perceptron分类器是一种线性算法,可以应用于二进制分类任务。
如何使用带有Scikit-Learn的Perceptron模型进行拟合,评估和做出预测。
如何在给定的数据集上调整Perceptron算法的超参数。

教程概述

     本教程分为3个部分,共三个部分。他们是:

感知器算法
Perceptron与Scikit-学习
音调感知器超参数

感知器算法

       Perceptron算法是两类(二进制)分类机器学习算法。它是一种神经网络模型,可能是最简单的神经网络模型类型。它由将一行数据作为输入并预测类标签的单个节点或神经元组成。这可以通过计算输入的加权和和偏差(设​​置为1)来实现。模型输入的加权总和称为激活。

      激活=权重*输入+偏差
     如果激活高于0.0,则模型将输出1.0;否则,模型将输出1.0。否则,将输出0.0。

     预测1:如果激活> 0.0
     预测0:如果激活<= 0.0
     假设输入已乘以模型系数,如线性回归和逻辑回归,则优良作法是在使用模型之前对数据进行标准化或标准化。感知器是线性分类算法。这意味着它将学习在特征空间中使用一条线(称为超平面)将两个类别分开的决策边界。因此,适用于那些类别可以通过线性或线性模型(称为线性可分离)很好地分离的问题。该模型的系数称为输入权重,并使用随机梯度下降优化算法进行训练。一次将来自训练数据集的示例显示给模型,模型进行预测并计算误差。然后,更新模型的权重以减少示例的误差。这称为Perceptron更新规则。对于训练数据集中的所有示例(称为时期)都重复此过程。然后,使用示例更新模型的过程会重复很多次。在每批中,使用较小比例的误差来更新模型权重,并且该比例由称为学习率的超参数控制,通常将其设置为较小的值。这是为了确保学习不会太快发生,从而导致技能水平可能较低,这被称为模型权重的优化(搜索)过程的过早收敛。

                                                             权重(t + 1)=权重(t)+学习率*(expected_i –预测值)* input_i
     当模型所产生的误差降至较低水平或不再改善时,或者执行了最大时期数时,训练将停止。

       模型权重的初始值设置为较小的随机值。另外,在每个训练纪元之前对训练数据集进行混洗。这是设计使然,以加速和改善模型训练过程。因此,学习算法是随机的,并且每次运行都会获得不同的结果。因此,优良作法是使用重复评估来总结算法在数据集上的性能,并报告平均分类精度。学习率和训练时期数是算法的超参数,可以使用启发式或超参数调整来设置。

      有关Perceptron算法的更多信息,请参见教程:

                                  如何从头开始在Python中实现感知器算法
      现在我们已经熟悉了Perceptron算法,现在让我们探索如何在Python中使用该算法。

Perceptron与Scikit-Learn

       可通过Perceptron类在scikit-learn Python机器学习库中使用Perceptron算法。该类允许您配置学习率(eta0),默认为1.0。

# define model
model = Perceptron(eta0=1.0)

      该实现还允许您配置训练时期的总数(max_iter),默认为1,000。

# define model
model = Perceptron(max_iter=1000)

     Perceptron算法的scikit-learn实现还提供了您可能想探索的其他配置选项,例如提前停止和使用惩罚损失。我们可以通过一个有效的示例来演示Perceptron分类器。首先,让我们定义一个综合分类数据集。我们将使用make_classification()函数创建一个包含1,000个示例的数据集,每个示例包含20个输入变量。该示例创建并汇总了数据集。

# test classification dataset
from sklearn.datasets import make_classification
# define dataset
X, y = make_classification(n_samples=1000, n_features=10, n_informative=10, n_redundant=0, random_state=1)
# summarize the dataset
print(X.shape, y.shape)

       运行示例将创建数据集并确认数据集的行数和列数。

(1000, 10) (1000,)

       我们可以通过RepeatedStratifiedKFold类使用重复的分层k折交叉验证来拟合和评估Perceptron模型。 我们将在测试装置中使用10折和3次重复。

# create the model
model = Perceptron()

       下面列出了为综合二进制分类任务评估Perceptron模型的完整示例。

# evaluate a perceptron model on the dataset
from numpy import mean
from numpy import std
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.linear_model import Perceptron
# define dataset
X, y = make_classification(n_samples=1000, n_features=10, n_informative=10, n_redundant=0, random_state=1)
# define model
model = Perceptron()
# define model evaluation method
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# evaluate model
scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
# summarize result
print('Mean Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))

      运行示例将在综合数据集上评估Perceptron算法,并报告10倍交叉验证的三个重复中的平均准确性。鉴于学习算法的随机性,您的具体结果可能会有所不同。 考虑运行该示例几次。在这种情况下,我们可以看到该模型实现了约84.7%的平均准确度。

Mean Accuracy: 0.847 (0.052)

     我们可能决定使用Perceptron分类器作为最终模型,并对新数据进行预测。这可以通过在所有可用数据上拟合模型管道并调用传递新数据行的predict()函数来实现。我们可以通过下面列出的完整示例进行演示。

# make a prediction with a perceptron model on the dataset
from sklearn.datasets import make_classification
from sklearn.linear_model import Perceptron
# define dataset
X, y = make_classification(n_samples=1000, n_features=10, n_informative=10, n_redundant=0, random_state=1)
# define model
model = Perceptron()
# fit model
model.fit(X, y)
# define new data
row = [0.12777556,-3.64400522,-2.23268854,-1.82114386,1.75466361,0.1243966,1.03397657,2.35822076,1.01001752,0.56768485]
# make a prediction
yhat = model.predict([row])
# summarize prediction
print('Predicted Class: %d' % yhat)

       运行示例将使模型适合模型并为新的数据行进行类标签预测。

Predicted Class: 1

       接下来,我们可以看一下配置模型的超参数。

调整感知器超参数

     必须为您的特定数据集配置Perceptron算法的超参数。也许最重要的超参数是学习率。较高的学习速度可能会使模型学习速度加快,但可能是以降低技能为代价的。 较小的学习率可以得到性能更好的模型,但是训练模型可能需要很长时间。您可以在本教程中了解有关探索学习率的更多信息:训练深度学习神经网络时如何配置学习率通常以较小的对数刻度(例如1e-4(或更小)和1.0)测试学习率。 在这种情况下,我们将测试以下值:

# define grid
grid = dict()
grid['eta0'] = [0.0001, 0.001, 0.01, 0.1, 1.0]

       下面的示例使用GridSearchCV类以及我们定义的值网格演示了这一点。

# grid search learning rate for the perceptron
from sklearn.datasets import make_classification
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.linear_model import Perceptron
# define dataset
X, y = make_classification(n_samples=1000, n_features=10, n_informative=10, n_redundant=0, random_state=1)
# define model
model = Perceptron()
# define model evaluation method
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# define grid
grid = dict()
grid['eta0'] = [0.0001, 0.001, 0.01, 0.1, 1.0]
# define search
search = GridSearchCV(model, grid, scoring='accuracy', cv=cv, n_jobs=-1)
# perform the search
results = search.fit(X, y)
# summarize
print('Mean Accuracy: %.3f' % results.best_score_)
print('Config: %s' % results.best_params_)
# summarize all
means = results.cv_results_['mean_test_score']
params = results.cv_results_['params']
for mean, param in zip(means, params):print(">%.3f with: %r" % (mean, param))

     运行示例将使用重复的交叉验证来评估配置的每种组合。鉴于学习算法的随机性,您的具体结果可能会有所不同。 尝试运行该示例几次。在这种情况下,我们可以看到,学习率比默认值小会导致更好的性能,学习率0.0001和0.001均达到约85.7%的分类精度,而默认值1.0则达到约84.7%的精度。

Mean Accuracy: 0.857
Config: {'eta0': 0.0001}
>0.857 with: {'eta0': 0.0001}
>0.857 with: {'eta0': 0.001}
>0.853 with: {'eta0': 0.01}
>0.847 with: {'eta0': 0.1}
>0.847 with: {'eta0': 1.0}

       另一个重要的超参数是使用多少个时期来训练模型。这可能取决于训练数据集,并且可能相差很大。 同样,我们将以1到1e + 4的对数刻度探索配置值。

# define grid
grid = dict()
grid['max_iter'] = [1, 10, 100, 1000, 10000]

      我们将使用上次搜索中的良好学习率0.0001。

# define model
model = Perceptron(eta0=0.0001)

     下面列出了搜索训练时期数的网格的完整示例。

# grid search total epochs for the perceptron
from sklearn.datasets import make_classification
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.linear_model import Perceptron
# define dataset
X, y = make_classification(n_samples=1000, n_features=10, n_informative=10, n_redundant=0, random_state=1)
# define model
model = Perceptron(eta0=0.0001)
# define model evaluation method
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# define grid
grid = dict()
grid['max_iter'] = [1, 10, 100, 1000, 10000]
# define search
search = GridSearchCV(model, grid, scoring='accuracy', cv=cv, n_jobs=-1)
# perform the search
results = search.fit(X, y)
# summarize
print('Mean Accuracy: %.3f' % results.best_score_)
print('Config: %s' % results.best_params_)
# summarize all
means = results.cv_results_['mean_test_score']
params = results.cv_results_['params']
for mean, param in zip(means, params):print(">%.3f with: %r" % (mean, param))

     运行示例将使用重复的交叉验证来评估配置的每种组合。鉴于学习算法的随机性,您的具体结果可能会有所不同。 尝试运行该示例几次。在这种情况下,我们可以看到从10到10,000的时间段,分类精度几乎相同。 一个有趣的例外是探索同时配置学习率和训练时期的数量,以查看是否可以获得更好的结果。

Mean Accuracy: 0.857
Config: {'max_iter': 10}
>0.850 with: {'max_iter': 1}
>0.857 with: {'max_iter': 10}
>0.857 with: {'max_iter': 100}
>0.857 with: {'max_iter': 1000}
>0.857 with: {'max_iter': 10000}

这篇关于基于Python实践感知器分类算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904716

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步