2023 E3 算法题第三题 (Appointment Slots)

2024-04-15 02:44

本文主要是介绍2023 E3 算法题第三题 (Appointment Slots),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

Task 3
There are N patients (numbered from 0 to N-1) who want to visit the doctor. The doctor has S possible appointment slots, numbered from 1 to S. Each of the patients has two preferences. Patient K would like to visit the doctor during either slot A[K] or slot B[K]. The doctor can treat only one patient during each slot.Is it possible to assign every patient to one of their preferred slots so that there will be at most one patient assigned to each slot?Write a function:class Solution { public boolean solution(int[] A, int[] B, int S); }1that, given two arrays A and B, both of N integers, and an integer S, returns true if it is possible to assign every patient to one of their preferred slots, one patient to one slot, and false otherwise.Examples:Given A = [1, 1, 3], B = [2, 2, 1] and S = 3, the function should return true. We could assign patients in the following way: [1, 2, 3], where the K-th element of the array represents the number of the slot to which patient K was assigned. Another correct assignment would be [2, 1, 3]. On the other hand, [2, 2, 1] would be an incorrect assignment as two patients would be assigned to slot 2.Given A = [3, 2, 3, 1], B = [1, 3, 1, 2] and S = 3, the function should return false. There are only three slots available, but there are four patients who want to visit the doctor. It is therefore not possible to assign the patients to the slots so that only one patient at a time would visit the doctor.Given A = [2, 5, 6, 5], B = [5, 4, 2, 2] and S = 8, the function should return true. For example, we could assign patients in the following way: [5, 4, 6, 2].

解法1

思路

代码


public class AppointmentSlots1 {public class Vistor{public boolean preferenceAVisited;public boolean preferenceBVisited;}public boolean solution1(int[] A, int[] B, int S){List<Vistor> vistors = new ArrayList();int[] slots = new int[S];Arrays.fill(slots, -1);for (int patientIndex =0 ; patientIndex < A.length; patientIndex ++){if (!this.assignPatientToSlot(A, B, slots, patientIndex, vistors)) {return false;}}for (Vistor vistor : vistors){System.out.println(vistor.preferenceAVisited + ":" + vistor.preferenceBVisited);}return true;}public boolean assignPatientToSlot(int[] A, int[] B, int[] slots, int patientIndex, List<Vistor> vistors){if (patientIndex==-1){return false;}if (A[patientIndex]> slots.length){return false;}//        System.out.println(patientIndex + ";" + vistors.size());Vistor vistor = null;if (patientIndex +1< vistors.size()){vistor = vistors.get(patientIndex);}if (vistor == null){vistor = new Vistor();vistor.preferenceAVisited = true;vistors.add(vistor);if (slots[A[patientIndex]-1]==-1){slots[A[patientIndex]-1] = 1;return true;}else if (slots[B[patientIndex]-1]==-1){slots[B[patientIndex]-1] = 1;vistor.preferenceBVisited = true;return true;}else{vistors.remove(patientIndex);return this.assignPatientToSlot(A, B, slots, patientIndex-1, vistors);}}else if (!vistor.preferenceBVisited){vistor.preferenceBVisited = true;if (slots[B[patientIndex]-1]==-1){slots[B[patientIndex]-1] = 1;return true;}else{vistors.remove(patientIndex);return this.assignPatientToSlot(A, B, slots, patientIndex-1, vistors);}}else{return false;}}public static void main(String[] args) {AppointmentSlots1 appointmentSlots = new AppointmentSlots1();// Example usage:int[] A1 = {1, 1, 3};int[] B1 = {2, 2, 1};int S1 = 3;System.out.println("==============Starting case 1========");System.out.println(appointmentSlots.solution1(A1, B1, S1));  // Output: trueint[] A2 = {8, 2, 3, 1};int[] B2 = {1, 3, 1, 2};int S2 = 3;System.out.println("==============Starting Case 2========");System.out.println(appointmentSlots.solution1(A2, B2, S2));  // Output: falseint[] A3 = {2, 5, 6, 5};int[] B3 = {5, 4, 2, 2};int S3 = 8;System.out.println("==============Starting Case 3========");System.out.println(appointmentSlots.solution1(A3, B3, S3));  // Output: true   5 4 6 2int[] A4 = {1, 2, 1, 6, 8, 7, 8};int[] B4 = {2, 3, 4, 7, 7, 8, 7};int S4 = 10;System.out.println("==============Starting Case 4========");System.out.println(appointmentSlots.solution1(A4, B4, S4));  // Output: false}
}

解法2

思路

代码


public class AppointmentSlots2 {public boolean solution1(int[] arrayA, int[] arrayB, int S){int[][] combinedArray = combineArrays(arrayA, arrayB);Set set = new HashSet();// 打印组合后的二维数组for (int i = 0; i < combinedArray.length; i++) {set =  new HashSet();
//            System.out.println(Arrays.toString(combinedArray[i]));for (int j =0 ;j < combinedArray[i].length; j ++){if (combinedArray[i][j] >S){return false;}int previousSize = set.size();set.add(combinedArray[i][j]);int currentSize = set.size();if (previousSize== currentSize){break;}}if (set.size() == combinedArray[i].length){return true;}}return false;}public static int[][] combineArrays(int[] arrayA, int[] arrayB) {int length = arrayA.length;int rows = (int) Math.pow(2, length); // 计算新数组的行数int[][] result = new int[rows][length]; // 创建新的二维数组// 填充新数组for (int i = 0; i < rows; i++) {for (int j = 0; j < length; j++) {// 判断当前位是否为1if ((i >> j & 1) == 1) {result[i][j] = arrayB[j]; // 为1时取数组B的元素} else {result[i][j] = arrayA[j]; // 为0时取数组A的元素}}}return result;}public static void main(String[] args) {AppointmentSlots2 appointmentSlots = new AppointmentSlots2();// Example usage:int[] A1 = {1, 1, 3};int[] B1 = {2, 2, 1};int S1 = 3;System.out.println("==============Starting case 1========");System.out.println(appointmentSlots.solution1(A1, B1, S1));  // Output: trueint[] A2 = {8, 2, 3, 1};int[] B2 = {1, 3, 1, 2};int S2 = 3;System.out.println("==============Starting Case 2========");System.out.println(appointmentSlots.solution1(A2, B2, S2));  // Output: falseint[] A3 = {2, 5, 6, 5};int[] B3 = {5, 4, 2, 2};int S3 = 8;System.out.println("==============Starting Case 3========");System.out.println(appointmentSlots.solution1(A3, B3, S3));  // Output: true   5 4 6 2int[] A4 = {1, 2, 1, 6, 8, 7, 8};int[] B4 = {2, 3, 4, 7, 7, 8, 7};int S4 = 10;System.out.println("==============Starting Case 4========");System.out.println(appointmentSlots.solution1(A4, B4, S4));  // Output: false}}

这篇关于2023 E3 算法题第三题 (Appointment Slots)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904697

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个