Isolation Forest 简介

2024-04-14 22:36
文章标签 简介 forest isolation

本文主要是介绍Isolation Forest 简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 简介

        孤立森林 iForest(Isolation Forest)是一种无监督学习算法,用于识别异常值。其基本原理是:异常数据由于数量较少且与正常数据差异较大,因此在被隔离时需要较少的步骤。

两个假设:

1. 异常的值是非常少的(如果异常值很多,可能被识别为正常的);
2. 异常值与其他值的差异较大(主要是全局上都为异常的异常,局部小异常可能发现不了,因为差异并不大)。

2. 具体流程

2.1 训练森林

    子采样: 首先从整个数据集中随机抽取一定数量的样本来为构建树做准备。这些抽样的子集大小通常远小于原始数据集的大小,这样可以限制树的大小,并且减少计算复杂度。
    构建孤立树 (iTrees): 对于每个子采样集,算法构建一棵孤立树。构建孤立树的过程是递归的。在每个节点,算法随机选择一个特征,并在该特征的最大值和最小值之间随机选择一个分割值。然后,数据根据这个分割值将样本分到左子树或右子树(这里其实就是简单的将样本中特征小于这个分割点的样本分到左边,其次分到右边)。这个过程的结束条件:树达到限定的高度, 节点中的样本数量到一定的数目,或者所有样本的所选特征值都是同一个值。
    森林构建: 重复1-2构建完特定数量的孤立树,集合为孤立森林。

2.2 首先要明确几个相关概念

    路径长度( h ( x ) h(x) h(x)): 指样本通过该孤立树构建阶段的特征选择方式,从树的根节点到达该样本被孤立的节点(被孤立就是意味着这个样本最终到达的树的叶子节点)所需要的边数。
    平均路径长度 E ( h ( x ) ) E(h(x)) E(h(x)): 该样本在森林中所有树的路径长度的平均值。
    树的平均路径长度:
    c ( n ) = 2 H ( n − 1 ) − 2 ( n − 1 ) n c(n)=2H(n-1)-\frac{2(n-1)}{n} c(n)=2H(n−1)−n2(n−1)​

-----
iForest 适用于连续数据的异常检测,将异常定义为 容易被孤立的离群点。 具体的,确定一个维度的特征,
并在最大值和最小值之间随机选择一个值 x ,然后按照小于 x 和 大于等于x 可以把数据分成左右两组。
然后再随机的按某个特征维度的取值把数据进行细分,重复上述步骤,直到无法细分,
直到数据不可再分。直观上,异常数据较少次切分就可以将它们单独划分出来,而正常数据恰恰相反。
sklearn.ensemble.IsolationForest
contamination:默认为auto,数据集中异常样本的比例
 
优点:高精准度

3. 算法优缺点

3.1 优点

    1. 高效性:IF特别适合处理大数据集。它具有线性的时间复杂度,并且由于使用了子采样,使得在计算上更加高效。
    2. 易于并行化: 和RF一样,构建孤立树是独立的过程,构建森林可以并行化。

3.2 缺点

    1. 异常值比例敏感性: 如果数据集中异常值的比例相对较高,其效果可能就会下降,因为它是基于异常值“少而不同”的假设。
    2. 对局部异常检测不敏感:因为 “少而不同的” 前提条件决定主要解决全局异常的特点,对在局部区域表现出轻微异常特征的点检测不是很敏感。
    3. 不适用于特别高维的数据:IF不会因为特征的多少而降低算法的效率,但也正因为每次只随机用其中一个特征作为分割的特征,如果特征维度很高,就会有很多特征没有用到。

4. demo

4.1 数据准备

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_splitn_samples, n_outliers = 120, 10
rng = np.random.RandomState(0)
cluster_1 = 0.4 * rng.randn(n_samples, 2) + np.array([2, 2])
cluster_2 = 0.3 * rng.randn(n_samples, 2) + np.array([-2, -2])
outliers = rng.uniform(low=-4, high=4, size=(n_outliers, 2))
X = np.concatenate([cluster_1, cluster_2, outliers])
y = np.concatenate([np.ones((2 * n_samples), dtype=int), -np.ones(n_outliers, dtype=int)])scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
handles, labels = scatter.legend_elements()
plt.axis("square")
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
plt.title("data distribution")
plt.show()

4.2 模型预测&可视化

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_splitn_samples, n_outliers = 120, 10
rng = np.random.RandomState(0)
cluster_1 = 0.4 * rng.randn(n_samples, 2) + np.array([2, 2])
cluster_2 = 0.3 * rng.randn(n_samples, 2) + np.array([-2, -2])
outliers = rng.uniform(low=-4, high=4, size=(n_outliers, 2))
X = np.concatenate([cluster_1, cluster_2, outliers])
y = np.concatenate([np.ones((2 * n_samples), dtype=int), -np.ones(n_outliers, dtype=int)])X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)
from sklearn.ensemble import IsolationForest
clf = IsolationForest(max_samples=100, random_state=0)
clf.fit(X_train)
y_pre_score_test = clf.decision_function(cluster_1)  # -1为异常, 1为正常,
y_pre_label_test = clf.predict(cluster_1)# ---------结果可视化--------------
# 通过网格的方式得到location的x和y坐标
xx, yy = np.meshgrid(np.linspace(-6, 6, 60), np.linspace(-6, 6, 60))
# concat x和y 得到输入的坐标
input_location = np.c_[xx.ravel(), yy.ravel()]
Z = clf.decision_function(input_location)
Z = Z.reshape(xx.shape)plt.title("IsolationForest")
plt.contourf(xx, yy, Z, camp=plt.cm.Blues_r)
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=20, edgecolor='k')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green', s=20, edgecolor='k')
c = plt.scatter(outliers[:, 0], outliers[:, 1], c='red', s=20, edgecolor='k')
plt.axis('tight')
plt.xlim((-6, 6))
plt.ylim((-6, 6))
plt.legend([b1, b2, c], ["train data", "test data", "outlier"], loc="best")
plt.show()

这篇关于Isolation Forest 简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904210

相关文章

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

业务协同平台--简介

一、使用场景         1.多个系统统一在业务协同平台定义协同策略,由业务协同平台代替人工完成一系列的单据录入         2.同时业务协同平台将执行任务推送给pda、pad等执行终端,通知各人员、设备进行作业执行         3.作业过程中,可设置完成时间预警、作业节点通知,时刻了解作业进程         4.做完再给你做过程分析,给出优化建议         就问你这一套下

容器编排平台Kubernetes简介

目录 什么是K8s 为什么需要K8s 什么是容器(Contianer) K8s能做什么? K8s的架构原理  控制平面(Control plane)         kube-apiserver         etcd         kube-scheduler         kube-controller-manager         cloud-controlle

【Tools】AutoML简介

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 AutoML(自动机器学习)是一种使用机器学习技术来自动化机器学习任务的方法。在大模型中的AutoML是指在大型数据集上使用自动化机器学习技术进行模型训练和优化。

SaaS、PaaS、IaaS简介

云计算、云服务、云平台……现在“云”已成了一个家喻户晓的概念,但PaaS, IaaS 和SaaS的区别估计还没有那么多的人分得清,下面就分别向大家普及一下它们的基本概念: SaaS 软件即服务 SaaS是Software-as-a-Service的简称,意思是软件即服务。随着互联网技术的发展和应用软件的成熟, 在21世纪开始兴起的一种完全创新的软件应用模式。 它是一种通过Internet提供

LIBSVM简介

LIBSVM简介 支持向量机所涉及到的数学知识对一般的化学研究者来说是比较难的,自己编程实现该算法难度就更大了。但是现在的网络资源非常发达,而且国际上的科学研究者把他们的研究成果已经放在网络上,免费提供给用于研究目的,这样方便大多数的研究者,不必要花费大量的时间理解SVM算法的深奥数学原理和计算机程序设计。目前有关SVM计算的相关软件有很多,如LIBSVM、mySVM、SVMLight等,这些

urllib与requests爬虫简介

urllib与requests爬虫简介 – 潘登同学的爬虫笔记 文章目录 urllib与requests爬虫简介 -- 潘登同学的爬虫笔记第一个爬虫程序 urllib的基本使用Request对象的使用urllib发送get请求实战-喜马拉雅网站 urllib发送post请求 动态页面获取数据请求 SSL证书验证伪装自己的爬虫-请求头 urllib的底层原理伪装自己的爬虫-设置代理爬虫coo

新一代车载(E/E)架构下的中央计算载体---HPC软件架构简介

老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节能减排。 无人问津也好,技不如人也罢,你都要试着安静下来,去做自己该做的事.而不是让内心的烦躁、焦虑、毁掉你本就不多的热情和定力。 时间不知不觉中,快要来到夏末秋初。一年又过去了一大半,成

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

OpenGL ES学习总结:基础知识简介

什么是OpenGL ES? OpenGL ES (为OpenGL for Embedded System的缩写) 为适用于嵌入式系统的一个免费二维和三维图形库。 为桌面版本OpenGL 的一个子集。 OpenGL ES管道(Pipeline) OpenGL ES 1.x 的工序是固定的,称为Fix-Function Pipeline,可以想象一个带有很多控制开关的机器,尽管加工