Python根据主播直播时间段判定订单销售额归属

2024-04-14 18:36

本文主要是介绍Python根据主播直播时间段判定订单销售额归属,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:最近在群里看到一个这样的直播电商的场景觉得还是挺有趣的,于是就想用Python来实现。

需求描述:根据主播直播时间段结合销售订单的付款时间判断所属销售的归属
在这里插入图片描述

生成主播在线直播时间段数据

from datetime import datetime, timedelta
import random
import pandas as pddef generate_live_data(start_time, live_duration, anchors, num_repeats=4):"""生成直播数据。参数:start_time (datetime): 直播开始时间。live_duration (timedelta): 直播时长。anchors (list): 主播列表。num_repeats (int): 每个主播重复直播的次数,默认为 4。返回:DataFrame: 包含生成的直播数据的 DataFrame,每行包括开始时间、结束时间和主播。"""live_data = []current_time = start_timefor anchor in anchors:for _ in range(num_repeats):  # 每人直播指定次数end_time = current_time + live_duration  # 计算直播结束时间live_data.append((current_time, end_time, anchor))current_time = end_time# 将列表转换为 DataFramedf = pd.DataFrame(live_data, columns=["Start Time", "End Time", "Anchor"])return df# 定义开始时间
start_time = datetime(2024, 4, 11, 0, 0)  # 2024年4月11日凌晨# 定义直播时长
live_duration = timedelta(hours=3)  # 每人直播三小时# 定义主播列表
anchors = ["Anchor 1", "Anchor 2", "Anchor 3", "Anchor 4"]# 生成直播数据
live_data_df = generate_live_data(start_time, live_duration, anchors)# 将数据写出到 Excel 文件
excel_file_path = "live_data.xlsx"
live_data_df.to_excel(excel_file_path, index=False)

主播数据展示

在这里插入图片描述

生成销售订单数据

import pandas as pd
from datetime import datetime, timedelta
import randomdef generate_purchase_data(start_time, end_time, time_interval, customers, products):"""生成模拟购买数据,并导出到 Excel 文件。参数:start_time (datetime): 数据开始时间。end_time (datetime): 数据结束时间。time_interval (timedelta): 时间间隔。customers (list): 模拟客户姓名列表。products (list): 模拟商品列表。返回:str: 导出的 Excel 文件路径。"""# 生成时间列表time_list = []current_time = start_timewhile current_time < end_time:time_list.append(current_time)current_time += time_interval# 生成模拟购买数据purchase_data = []for time in time_list:for customer in customers:product = random.choice(products)  # 随机选择一个商品quantity = random.randint(1, 5)  # 随机生成购买数量purchase_data.append((time, customer, product, quantity))# 将购买数据转换为 DataFramedf = pd.DataFrame(purchase_data, columns=["Time", "Customer", "Product", "Quantity"])# 导出到 Excel 文件excel_file = "purchase_data.xlsx"df.to_excel(excel_file, index=False)return excel_file# 定义开始时间和结束时间
start_time = datetime(2024, 4, 11, 0, 0)  # 2024年4月11日凌晨
end_time = datetime(2024, 4, 13, 0, 0)    # 2024年4月12日凌晨# 定义时间间隔
time_interval = timedelta(minutes=30)  # 每隔半小时# 定义模拟的客户姓名列表和商品列表
customers = ["Alice", "Bob", "Charlie", "David", "Emma"]
products = ["Product A", "Product B", "Product C", "Product D", "Product E"]# 生成购买数据并导出到 Excel 文件
excel_file_path = generate_purchase_data(start_time, end_time, time_interval, customers, products)print("数据已成功导出到 Excel 文件:", excel_file_path)

销售订单数据展示

在这里插入图片描述

根据销售数据匹配主播直播时间段并保存到Excel文件

有时候我们需要根据销售数据来匹配主播的直播时间段,以便进行更深入的分析。

1. 导入必要的模块

import pandas as pd
from datetime import datetime

2. 从Excel文件中读取销售数据和主播直播时间数据

# 从Excel文件中读取销售数据
sales_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\purchase_data.xlsx")# 将时间列转换为datetime类型
sales_data['Time'] = pd.to_datetime(sales_data['Time'])# 从Excel文件中读取主播直播时间数据
anchor_time_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\live_data.xlsx")# 将时间列转换为datetime类型
anchor_time_data['Start Time'] = pd.to_datetime(anchor_time_data['Start Time'])
anchor_time_data['End Time'] = pd.to_datetime(anchor_time_data['End Time'])

3. 初始化结果列表并遍历销售数据

# 初始化一个空列表,用于存储结果
result = []# 遍历销售数据,判断每笔销售属于哪个主播的直播时间段
for index, row in sales_data.iterrows():sale_time = row['Time']customer = row['Customer']product = row['Product']quantity = row['Quantity']# 判断销售时间在哪个主播的直播时间段内for _, anchor_row in anchor_time_data.iterrows():start_time = anchor_row['Start Time']end_time = anchor_row['End Time']anchor = anchor_row['Anchor']if start_time <= sale_time <= end_time:result.append((start_time, end_time, anchor,sale_time, customer, product, quantity))break

4. 将结果转换为DataFrame并保存到Excel文件

# 将结果转换为DataFrame
result_df = pd.DataFrame(result, columns=['Start Time', 'End Time', 'Anchor','sale_time', 'Customer', 'Product', 'Quantity'])# 将结果保存到Excel文件
excel_file_path = "live_data2.xlsx"
result_df.to_excel(excel_file_path, index=False)

5. 完整代码

import pandas as pd
from datetime import datetime# 从Excel文件中读取销售数据
sales_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\purchase_data.xlsx")# 将时间列转换为datetime类型
sales_data['Time'] = pd.to_datetime(sales_data['Time'])# 从Excel文件中读取主播直播时间数据
anchor_time_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\live_data.xlsx")# 将时间列转换为datetime类型
anchor_time_data['Start Time'] = pd.to_datetime(anchor_time_data['Start Time'])
anchor_time_data['End Time'] = pd.to_datetime(anchor_time_data['End Time'])# 初始化一个空列表,用于存储结果
result = []# 遍历销售数据,判断每笔销售属于哪个主播的直播时间段
for index, row in sales_data.iterrows():sale_time = row['Time']customer = row['Customer']product = row['Product']quantity = row['Quantity']# 判断销售时间在哪个主播的直播时间段内for _, anchor_row in anchor_time_data.iterrows():start_time = anchor_row['Start Time']end_time = anchor_row['End Time']anchor = anchor_row['Anchor']if start_time <= sale_time <= end_time:result.append((start_time, end_time, anchor,sale_time, customer, product, quantity))break# 将结果转换为DataFrame
result_df = pd.DataFrame(result, columns=['Start Time', 'End Time', 'Anchor','sale_time', 'Customer', 'Product', 'Quantity'])# 打印结果
print(result_df)excel_file_path = "live_data2.xlsx"
result_df.to_excel(excel_file_path, index=False)

这篇关于Python根据主播直播时间段判定订单销售额归属的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903699

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相