Python根据主播直播时间段判定订单销售额归属

2024-04-14 18:36

本文主要是介绍Python根据主播直播时间段判定订单销售额归属,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:最近在群里看到一个这样的直播电商的场景觉得还是挺有趣的,于是就想用Python来实现。

需求描述:根据主播直播时间段结合销售订单的付款时间判断所属销售的归属
在这里插入图片描述

生成主播在线直播时间段数据

from datetime import datetime, timedelta
import random
import pandas as pddef generate_live_data(start_time, live_duration, anchors, num_repeats=4):"""生成直播数据。参数:start_time (datetime): 直播开始时间。live_duration (timedelta): 直播时长。anchors (list): 主播列表。num_repeats (int): 每个主播重复直播的次数,默认为 4。返回:DataFrame: 包含生成的直播数据的 DataFrame,每行包括开始时间、结束时间和主播。"""live_data = []current_time = start_timefor anchor in anchors:for _ in range(num_repeats):  # 每人直播指定次数end_time = current_time + live_duration  # 计算直播结束时间live_data.append((current_time, end_time, anchor))current_time = end_time# 将列表转换为 DataFramedf = pd.DataFrame(live_data, columns=["Start Time", "End Time", "Anchor"])return df# 定义开始时间
start_time = datetime(2024, 4, 11, 0, 0)  # 2024年4月11日凌晨# 定义直播时长
live_duration = timedelta(hours=3)  # 每人直播三小时# 定义主播列表
anchors = ["Anchor 1", "Anchor 2", "Anchor 3", "Anchor 4"]# 生成直播数据
live_data_df = generate_live_data(start_time, live_duration, anchors)# 将数据写出到 Excel 文件
excel_file_path = "live_data.xlsx"
live_data_df.to_excel(excel_file_path, index=False)

主播数据展示

在这里插入图片描述

生成销售订单数据

import pandas as pd
from datetime import datetime, timedelta
import randomdef generate_purchase_data(start_time, end_time, time_interval, customers, products):"""生成模拟购买数据,并导出到 Excel 文件。参数:start_time (datetime): 数据开始时间。end_time (datetime): 数据结束时间。time_interval (timedelta): 时间间隔。customers (list): 模拟客户姓名列表。products (list): 模拟商品列表。返回:str: 导出的 Excel 文件路径。"""# 生成时间列表time_list = []current_time = start_timewhile current_time < end_time:time_list.append(current_time)current_time += time_interval# 生成模拟购买数据purchase_data = []for time in time_list:for customer in customers:product = random.choice(products)  # 随机选择一个商品quantity = random.randint(1, 5)  # 随机生成购买数量purchase_data.append((time, customer, product, quantity))# 将购买数据转换为 DataFramedf = pd.DataFrame(purchase_data, columns=["Time", "Customer", "Product", "Quantity"])# 导出到 Excel 文件excel_file = "purchase_data.xlsx"df.to_excel(excel_file, index=False)return excel_file# 定义开始时间和结束时间
start_time = datetime(2024, 4, 11, 0, 0)  # 2024年4月11日凌晨
end_time = datetime(2024, 4, 13, 0, 0)    # 2024年4月12日凌晨# 定义时间间隔
time_interval = timedelta(minutes=30)  # 每隔半小时# 定义模拟的客户姓名列表和商品列表
customers = ["Alice", "Bob", "Charlie", "David", "Emma"]
products = ["Product A", "Product B", "Product C", "Product D", "Product E"]# 生成购买数据并导出到 Excel 文件
excel_file_path = generate_purchase_data(start_time, end_time, time_interval, customers, products)print("数据已成功导出到 Excel 文件:", excel_file_path)

销售订单数据展示

在这里插入图片描述

根据销售数据匹配主播直播时间段并保存到Excel文件

有时候我们需要根据销售数据来匹配主播的直播时间段,以便进行更深入的分析。

1. 导入必要的模块

import pandas as pd
from datetime import datetime

2. 从Excel文件中读取销售数据和主播直播时间数据

# 从Excel文件中读取销售数据
sales_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\purchase_data.xlsx")# 将时间列转换为datetime类型
sales_data['Time'] = pd.to_datetime(sales_data['Time'])# 从Excel文件中读取主播直播时间数据
anchor_time_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\live_data.xlsx")# 将时间列转换为datetime类型
anchor_time_data['Start Time'] = pd.to_datetime(anchor_time_data['Start Time'])
anchor_time_data['End Time'] = pd.to_datetime(anchor_time_data['End Time'])

3. 初始化结果列表并遍历销售数据

# 初始化一个空列表,用于存储结果
result = []# 遍历销售数据,判断每笔销售属于哪个主播的直播时间段
for index, row in sales_data.iterrows():sale_time = row['Time']customer = row['Customer']product = row['Product']quantity = row['Quantity']# 判断销售时间在哪个主播的直播时间段内for _, anchor_row in anchor_time_data.iterrows():start_time = anchor_row['Start Time']end_time = anchor_row['End Time']anchor = anchor_row['Anchor']if start_time <= sale_time <= end_time:result.append((start_time, end_time, anchor,sale_time, customer, product, quantity))break

4. 将结果转换为DataFrame并保存到Excel文件

# 将结果转换为DataFrame
result_df = pd.DataFrame(result, columns=['Start Time', 'End Time', 'Anchor','sale_time', 'Customer', 'Product', 'Quantity'])# 将结果保存到Excel文件
excel_file_path = "live_data2.xlsx"
result_df.to_excel(excel_file_path, index=False)

5. 完整代码

import pandas as pd
from datetime import datetime# 从Excel文件中读取销售数据
sales_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\purchase_data.xlsx")# 将时间列转换为datetime类型
sales_data['Time'] = pd.to_datetime(sales_data['Time'])# 从Excel文件中读取主播直播时间数据
anchor_time_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\live_data.xlsx")# 将时间列转换为datetime类型
anchor_time_data['Start Time'] = pd.to_datetime(anchor_time_data['Start Time'])
anchor_time_data['End Time'] = pd.to_datetime(anchor_time_data['End Time'])# 初始化一个空列表,用于存储结果
result = []# 遍历销售数据,判断每笔销售属于哪个主播的直播时间段
for index, row in sales_data.iterrows():sale_time = row['Time']customer = row['Customer']product = row['Product']quantity = row['Quantity']# 判断销售时间在哪个主播的直播时间段内for _, anchor_row in anchor_time_data.iterrows():start_time = anchor_row['Start Time']end_time = anchor_row['End Time']anchor = anchor_row['Anchor']if start_time <= sale_time <= end_time:result.append((start_time, end_time, anchor,sale_time, customer, product, quantity))break# 将结果转换为DataFrame
result_df = pd.DataFrame(result, columns=['Start Time', 'End Time', 'Anchor','sale_time', 'Customer', 'Product', 'Quantity'])# 打印结果
print(result_df)excel_file_path = "live_data2.xlsx"
result_df.to_excel(excel_file_path, index=False)

这篇关于Python根据主播直播时间段判定订单销售额归属的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903699

相关文章

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

Python如何实现 HTTP echo 服务器

《Python如何实现HTTPecho服务器》本文介绍了如何使用Python实现一个简单的HTTPecho服务器,该服务器支持GET和POST请求,并返回JSON格式的响应,GET请求返回请求路... 一个用来做测试的简单的 HTTP echo 服务器。from http.server import HT

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

python中cv2.imdecode()与cv2.imencode()的使用小结

《python中cv2.imdecode()与cv2.imencode()的使用小结》本文介绍了cv2.imencode()和cv2.imdecode()函数的使用,文中通过示例代码介绍的非常详细,对... 目录1、图片路径带中文的读取和写入1.1 读取1.2 写入2、在网络中传输图片cv2.imencod