人工智能|机器学习——基于机器学习的信用卡办卡意愿模型预测项目

本文主要是介绍人工智能|机器学习——基于机器学习的信用卡办卡意愿模型预测项目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景介绍

在金融领域,了解客户的信用卡办卡意愿对于银行和金融机构至关重要。借助机器学习技术,我们可以根据客户的历史数据和行为模式预测其是否有办理信用卡的倾向。本项目通过Python中的机器学习库,构建了两个常用的分类模型:随机森林和逻辑回归,来预测客户的信用卡办卡意愿,通过使用Django框架通过构架可视化的方式分析数据。

二、数据准备

首先,我们从MySQL数据库中获取处理后的客户数据。这些数据经过预处理和特征工程,包含了客户的各种特征信息,以及是否流失的标签。

# 数据库连接和数据获取
import pandas as pd
import pymysql
from data.mapper import host, user, password, database# 连接MySQL数据库
conn = pymysql.connect(host=host,user=user,password=password,database=database
)# 从MySQL数据库中读取处理后的数据
query = "SELECT * FROM processed_customer_data"
df = pd.read_sql(query, conn)# 关闭数据库连接
conn.close()

三、模型训练与评估

3.1 随机森林模型

随机森林是一种集成学习方法,通过构建多个决策树来进行分类或回归。我们使用随机森林模型对客户的信用卡办卡意愿进行预测,并评估模型性能。

# 随机森林模型训练与评估
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix# 特征与标签分割
X = df.drop(columns=['Attrition_Flag'])
y = df['Attrition_Flag']# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)# 随机森林模型训练
rf_model = RandomForestClassifier()
rf_model.fit(X_train, y_train)# 模型预测
y_pred = rf_model.predict(X_test)# 模型评估
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

3.2 逻辑回归模型

逻辑回归是一种线性模型,常用于二分类问题。我们同样使用逻辑回归模型对客户的信用卡办卡意愿进行预测,并评估模型性能。

# 逻辑回归模型训练与评估
from sklearn.linear_model import LogisticRegression# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 逻辑回归模型训练
logreg_model = LogisticRegression()
logreg_model.fit(X_train, y_train)# 模型预测
y_pred = logreg_model.predict(X_test)# 模型评估
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

四、数据可视化

我们使用Django作为后端框架实现数据可视化,通过Pyecharts库创建多种图表,以更直观地展示数据分布和模型评估结果。

# Django视图函数中的数据可视化
from django.shortcuts import render
from pyecharts.charts import Bar, Pie, Line
from pyecharts import options as opts
from pyecharts.globals import CurrentConfig, ThemeTypefrom web.service.task_service import get_custormer_age, get_income_category, get_education_level, get_credit_limit, \get_months_inactive_12_mondef bar_chart(request):# 获取客户年龄分布数据x, y = get_custormer_age()line = (Line().add_xaxis([str(age) for age in x]).add_yaxis("Count", y).set_global_opts(title_opts=opts.TitleOpts(title="客户年龄分布图"),xaxis_opts=opts.AxisOpts(name="Age"),yaxis_opts=opts.AxisOpts(name="Count"),))# 获取客户信用卡额度分布数据x1, y1 = get_credit_limit()line1 = (Line().add_xaxis([str(age) for age in x1]).add_yaxis("Count", y1).set_global_opts(title_opts=opts.TitleOpts(title="客户信用卡额度top10分布图"),xaxis_opts=opts.AxisOpts(name="Age"),yaxis_opts=opts.AxisOpts(name="Count"),))# 获取客户非活跃月数分布数据bar1 = Bar()x1, y1 = get_months_inactive_12_mon()bar1.add_xaxis(x1)bar1.add_yaxis("客户去年非活跃月数分布", y1)# 获取客户收入范围趋势数据bar = Bar()x, y = get_income_category()bar.add_xaxis(x)bar.add_yaxis("收入范围趋势图", y)# 获取客户教育水平分布数据pie = Pie()tuple = get_education_level()pie.add("教育水平分布图", tuple)# 获取图表的JavaScript代码line_js = line.render_embed()bar_js = bar.render_embed()pie_js = pie.render_embed()bar1_js = bar1.render_embed()line1_js = line1.render_embed()return render(request, 'charts/bar_chart.html', {'line': line_js, 'bar': bar_js, 'pie': pie_js, 'line1': line1_js, 'bar1': bar1_js})

五、总结

通过本项目,我们使用了机器学习模型预测了客户的信用卡办卡意愿,并通过Django实现了数据的可视化展示。这使得银行和金融机构能够更好地理解客户行为模式,并做出相应的业务决策。

这篇关于人工智能|机器学习——基于机器学习的信用卡办卡意愿模型预测项目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901849

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

Python项目打包部署到服务器的实现

《Python项目打包部署到服务器的实现》本文主要介绍了PyCharm和Ubuntu服务器部署Python项目,包括打包、上传、安装和设置自启动服务的步骤,具有一定的参考价值,感兴趣的可以了解一下... 目录一、准备工作二、项目打包三、部署到服务器四、设置服务自启动一、准备工作开发环境:本文以PyChar

多模块的springboot项目发布指定模块的脚本方式

《多模块的springboot项目发布指定模块的脚本方式》该文章主要介绍了如何在多模块的SpringBoot项目中发布指定模块的脚本,作者原先的脚本会清理并编译所有模块,导致发布时间过长,通过简化脚本... 目录多模块的springboot项目发布指定模块的脚本1、不计成本地全部发布2、指定模块发布总结多模

SpringBoot项目删除Bean或者不加载Bean的问题解决

《SpringBoot项目删除Bean或者不加载Bean的问题解决》文章介绍了在SpringBoot项目中如何使用@ComponentScan注解和自定义过滤器实现不加载某些Bean的方法,本文通过实... 使用@ComponentScan注解中的@ComponentScan.Filter标记不加载。@C

javafx 如何将项目打包为 Windows 的可执行文件exe

《javafx如何将项目打包为Windows的可执行文件exe》文章介绍了三种将JavaFX项目打包为.exe文件的方法:方法1使用jpackage(适用于JDK14及以上版本),方法2使用La... 目录方法 1:使用 jpackage(适用于 JDK 14 及更高版本)方法 2:使用 Launch4j(

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼