带你重读Youtube深度学习推荐系统论文,惊为神文

2024-04-14 00:08

本文主要是介绍带你重读Youtube深度学习推荐系统论文,惊为神文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=png

来源:知乎专栏

作者:王喆

本文约5400字,建议阅读10+分钟。

本以为毫不起眼的地方,也藏着Youtube工程师宝贵的工程经验


640?wx_fmt=jpeg


这里是王喆的机器学习笔记,每隔一到两周我会站在算法工程师的角度讲解一些计算广告、推荐系统相关的文章。选择文章必须满足一下三个条件:


  • 一是工程导向的;

  • 二是阿里、facebook、google等一线互联网公司出品的

  • 三是前沿或者经典的


这周我们一起讨论一下Youtube的深度推荐系统论文《Deep Neural Networks for YouTube Recommendations》,这是2016年的论文,按照今天的标准来看,已经没有什么新颖的地方,我也是两年前读过这篇文章之后就放下了,但前几天重读这篇文章,竟让发现了诸多亮点,几乎处处是套路,处处是经验,不由惊为神文。这篇神文给我留下的深刻印象有两点:


  • 这毫无疑问是工业界论文的典范,是我非常推崇的工程导向的,算法工程师必读的文章;

  • 我以为毫不起眼的地方,也藏着Youtube工程师宝贵的工程经验,相比上周介绍的阿里的深度兴趣网络DIN,最重要的价值就在于Attention机制,这篇文章你应该精确到句子来体会,这是我惊为神文的原因。


废话不多说,下面就跟大家分享一下两次拜读这篇论文的不同体验和收获。


第一遍读这篇论文的时候,我想所有人都是冲着算法的架构去的,在深度学习推荐系统已经成为各大公司“基本操作”的今天,Youtube在算法架构上并无惊奇之处,我们来快速介绍一下文章中的深度学习推荐系统的算法架构。


640?wx_fmt=jpeg


Youtube的用户推荐场景自不必多说,作为全球最大的UGC的视频网站,需要在百万量级的视频规模下进行个性化推荐。由于候选视频集合过大,考虑online系统延迟问题,不宜用复杂网络直接进行推荐,所以Youtube采取了两层深度网络完成整个推荐过程:


  • 第一层是Candidate Generation Model完成候选视频的快速筛选,这一步候选视频集合由百万降低到了百的量级。

  • 第二层是用Ranking Model完成几百个候选视频的精排。


首先介绍candidate generation模型的架构:


640?wx_fmt=jpeg

Youtube Candidate Generation Model


我们自底而上看这个网络,最底层的输入是用户观看过的video的embedding向量,以及搜索词的embedding向量。至于这个embedding向量是怎么生成的,作者的原话是这样的:


Inspired by continuous bag of words language models, we learn high dimensional embeddings for each video in a xed vocabulary and feed these embeddings into a feedforward neural network


所以作者是先用word2vec方法对video和search token做了embedding之后再作为输入的,这也是做embedding的“基本操作”,不用过多介绍;当然,除此之外另一种大家应该也比较熟悉,就是通过加一个embedding层跟上面的DNN一起训练,两种方法孰优孰劣,有什么适用场合,大家可以讨论一下。


特征向量里面还包括了用户的地理位置的embedding,年龄,性别等。然后把所有这些特征concatenate起来,喂给上层的ReLU神经网络。


三层神经网络过后,我们看到了softmax函数。这里Youtube的同学们把这个问题看作为用户推荐next watch的问题,所以输出应该是一个在所有candidate video上的概率分布,自然是一个多分类问题。


好了,这一套深度学习的“基本操作”下来,就构成了Youtube的candidate generation网络,看似平淡无奇,其实还是隐藏着一些问题的,比如:


  • 架构图的左上角,为什么在online serving的时候不直接用这套网络进行预测而要使用nearest neighbor search 的方法?

  • 多分类问题中,Youtube的candidate video有百万之巨,意味着有几百万个分类,这必然会影响训练效果和速度,如何改进?


这些问题在读第一遍的时候我也没有深想深看,但却是工程实现中必然会遇到的问题,我们随后再深入介绍论文中的解决方法。


既然得到了几百个候选集合,下一步就是利用ranking模型进行精排序,下面是ranking深度学习网络的架构图。


640?wx_fmt=jpeg

Youtube Ranking Model


乍一看上面的ranking model似乎与candidate generation模型没有什么区别,模型架构还是深度学习的“基本操作”,唯一的区别就是特征工程,那么我们就讲讲特征工程。


事实上原文也明确说明了,引入另一套DNN作为ranking model的目的就是引入更多描述视频、用户以及二者之间关系的特征,达到对候选视频集合准确排序的目的。


During ranking, we have access to many more features describing the video and the user's relationship to the video because only a few hundred videos are being scored rather than the millions scored in candidate generation.


具体一点,从左至右的特征依次是:


  • impression video ID embedding: 当前要计算的video的embedding

  • watched video IDs average embedding: 用户观看过的最后N个视频embeddingaverage pooling

  • language embedding: 用户语言的embedding和当前视频语言的embedding

  • time since last watch: 自上次观看同channel视频的时间

  • #previous impressions: 该视频已经被曝光给该用户的次数


上面五个特征中,我想重点谈谈第4个和第5个。因为这两个很好的引入了对用户行为的观察。


第4个特征背后的思想是:


We observe that the most important signals are those that describe a user's previous interaction with the item itself and other similar items.


有一些引入attention的意思,这里是用了time since last watch这个特征来反应用户看同类视频的间隔时间。从用户的角度想一想,假如我们刚看过“DOTA经典回顾”这个channel的视频,我们很大概率是会继续看这个channel的视频的,那么该特征就很好的捕捉到了这一用户行为。


第5个特征#previous impressions则一定程度上引入了exploration的思想,避免同一个视频持续对同一用户进行无效曝光。尽量增加用户没看过的新视频的曝光可能性。


至此,我的第一遍论文阅读就结束了,对Youtube的算法框架有了概念,但总觉得不过如此,没什么太多新颖的地方。


但如果真这么想,还是太naive了,与上一篇阿里的深度兴趣网络DIN不同的是,你读懂了DIN的attention机制,你就抓住了其论文70%的价值,但这篇文章,如果你只读懂了Youtube的推荐系统架构,你只抓住了30%的价值。那么剩下的70%的价值在哪里呢?


在重读这篇文章的时候,我从一个工程师的角度,始终绷着“如何实现”这根弦,发现这篇论文的工程价值之前被我大大忽略了。下面我列出十个文中解决的非常有价值的问题:


  1. 文中把推荐问题转换成多分类问题,在next watch的场景下,每一个备选video都会是一个分类,因此总共的分类有数百万之巨,这在使用softmax训练时无疑是低效的,这个问题Youtube是如何解决的?

  2. 在candidate generation model的serving过程中,Youtube为什么不直接采用训练时的model进行预测,而是采用了一种最近邻搜索的方法?

  3. Youtube的用户对新视频有偏好,那么在模型构建的过程中如何引入这个feature?

  4. 在对训练集的预处理过程中,Youtube没有采用原始的用户日志,而是对每个用户提取等数量的训练样本,这是为什么?

  5. Youtube为什么不采取类似RNN的Sequence model,而是完全摒弃了用户观看历史的时序特征,把用户最近的浏览历史等同看待,这不会损失有效信息吗?

  6. 在处理测试集的时候,Youtube为什么不采用经典的随机留一法(random holdout),而是一定要把用户最近的一次观看行为作为测试集?

  7. 在确定优化目标的时候,Youtube为什么不采用经典的CTR,或者播放率(Play Rate),而是采用了每次曝光预期播放时间(expected watch time per impression)作为优化目标?

  8. 在进行video embedding的时候,为什么要直接把大量长尾的video直接用0向量代替?

  9. 针对某些特征,比如#previous impressions,为什么要进行开方和平方处理后,当作三个特征输入模型?

  10. 为什么ranking model不采用经典的logistic regression当作输出层,而是采用了weighted logistic regression?


因为我也是在视频推荐领域工作,所以可以很负责任的说以上的十个问题都是非常有价值的。但今天一口气写到这里,感觉有点气力不足了。。大家如果感兴趣的话可以点个赞,我明天再详细分析一下以上十大问题的答案。


上面问题的解答已经完成啦,大家请参考我的下一篇文章——


好了,这里是王喆的机器学习笔记的第二篇文章,水平有限,欢迎大家吐槽,批评,纠错。


参考资


Deep Neural Networks for YouTube Recommendation

Recommender System Paper List

推荐系统中的注意力机制——阿里深度兴趣网络(DIN)


640?wx_fmt=png

640?wx_fmt=jpeg

这篇关于带你重读Youtube深度学习推荐系统论文,惊为神文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901597

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听