STM32H7的Cache学习和应用

2024-04-13 23:28
文章标签 学习 应用 cache stm32h7

本文主要是介绍STM32H7的Cache学习和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32H7的Cache学习和应用

  • 啥是Cache?
  • Cache的配置
    • 配置 Non-cacheable
    • 配置 Write through,read allocate,no write allocate
    • 配置 Write back,read allocate,no write allocate
    • 配置 Write back,read allocate,write allocate
    • 共享配置是个隐形的大坑
  • Cache的关键知识点
  • Cache的推荐配置和隐患

啥是Cache?

当前芯片厂商出的 M7 内核芯片基本都做了一级 Cache 支持,Cache 又分数据缓存 D-Cache 和指令缓冲 I-Cache,STM32H7 的数据缓存和指令缓存大小都是 16KB。对于指令缓冲,用户不用管,这里主要说的是数据缓存 D-Cache。以 STM32H7 为例,主频是 400MHz,除了 TCM 和 Cache 以 400MHz工作,其它 AXI SRAM,SRAM1,SRAM2 等都是以 200MHz 工作。数据缓存 D-Cache 就是解决 CPU加速访问 SRAM。
如果每次 CPU 要读写 SRAM 区的数据,都能够在 Cache 里面进行,自然是最好的,实现了 200MHz到 400MHz 的飞跃,实际是做不到的,因为数据 Cache 只有 16KB 大小,总有用完的时候。
读操作:
如果 CPU 要读取的 SRAM 区数据在 Cache 中已经加载好,这就叫读命中(Cache hit),如果 Cache里面没有怎么办,这就是所谓的读 Cache Miss。
写操作:
如果 CPU 要写的 SRAM 区数据在 Cache 中已经开辟了对应的区域(专业词汇叫 Cache Line,以 32字节为单位),这就叫写命中(Cache hit),如果 Cache 里面没有开辟对应的区域怎么办,这就是所谓的写 Cache Miss。
在这里插入图片描述

Cache的配置

主要通过配置TEX C B S位,其中TEX是设置Cache的策略,B是缓冲用来配合Cache设置,S则是共享。
在这里插入图片描述
分为4种模式:
在这里插入图片描述

配置 Non-cacheable

这个最好理解,就是正常的读写操作,无 Cache。

配置 Write through,read allocate,no write allocate

使能了此配置的 SRAM 缓冲区写操作
如果 CPU 要写的 SRAM 区数据在 Cache 中已经开辟了对应的区域,那么会同时写到 Cache 里面和SRAM 里面;如果没有,就用到配置 no write allocate 了,意思就是 CPU 会直接往 SRAM 里面写数据,而不再需要在 Cache 里面开辟空间了。
在写 Cache 命中的情况下,这个方式的优点是 Cache 和 SRAM 的数据同步更新了,没有多总线访问造成的数据一致性问题。缺点也明显,Cache 在写操作上无法有效发挥性能。
对应的两种 MPU 配置如下:
TEX = 000 C=1 B=0 S=1
TEX = 000 C=1 B=0 S=0

配置 Write back,read allocate,no write allocate

使能了此配置的 SRAM 缓冲区写操作
如果 CPU 要写的 SRAM 区数据在 Cache 中已经开辟了对应的区域,那么会写到 Cache 里面,而不会立即更新 SRAM;如果没有,就用到配置 no write allocate 了,意思就是 CPU 会直接往 SRAM 里面写数据,而不再需要在 Cache 里面开辟空间了。
安全隐患,如果 Cache 命中的情况下,此时仅 Cache 更新了,而 SRAM 没有更新,那么 DMA 直接从 SRAM 里面读出来的就是错误的。
对应两种 MPU 配置如下:
TEX = 000 C=1 B=1 S=1
TEX = 000 C=1 B=1 S=0

配置 Write back,read allocate,write allocate

使能了此配置的 SRAM 缓冲区写操作
如果 CPU 要写的 SRAM 区数据在 Cache 中已经开辟了对应的区域,那么会写到 Cache 里面,而不会立即更新 SRAM;如果没有,就用到配置 write allocate 了,意思就是 CPU 写到往 SRAM 里面的数据,会同步在 Cache 里面开辟一个空间将 SRAM 中写入的数据加载进来,如果此时立即读此 SRAM 区,那么就会有很大的速度优势。
安全隐患,如果 Cache 命中的情况下,此时仅 Cache 更新了,而 SRAM 没有更新,那么 DMA 直接从 SRAM 里面读出来的就是错误的。

注意,M7 内核只要开启了 Cache,read allocate 就是开启的,因此4种模式的Cache的对SRAM的读操作一样
read allocate下SRAM 缓冲区读操作
如果 CPU 要读取的 SRAM 区数据在 Cache 中已经加载好,就可以直接从 Cache 里面读取。如果没有,就用到配置 read allocate 了,意思就是在 Cache 里面开辟区域,将 SRAM 区数据加载进来,后续的操作,CPU 可以直接从 Cache 里面读取,从而时间加速。
安全隐患,如果 Cache 命中的情况下,DMA 写操作也更新了 SRAM 区的数据,CPU 直接从 Cache里面读取的数据就是错误的。

共享配置是个隐形的大坑

在这里插入图片描述
而 H7 的应用笔记对齐的描述是开启共享基本等同于关闭 Cache。
实际测试下面四种开 Cache 的情况,开关共享对缓冲区的大批量数据的读操作影响很大,基本差出两倍,而写操作基本没有影响,也许这就是所谓的多总线同步读造成的。另外共享开关仅对开启了 Cache 的情况下有影响,而对于关闭了 Cache 的情况是没有影响的,开不开没关系。(来源于安富莱_STM32-V7开发板手册)

Cache的关键知识点

  1. Cortex-M7 内核的 L1 Cache 由多行内存区组成,每行有 32 字节,每行都配有一个地址标签。数据缓冲 DCache 是每 4 行为一组,称为 4-way set associative。而指令缓冲区 ICache 是 2 行为一组这样节省地址标签,不用每个行都标记一个地址
  2. 对于读操作,只有在第 1 次访问指定地址时才会加载到 Cache,而写操作的话,可以直接写到内存中(write-through 模式)或者放到 Cache 里面,后面再写入(write-back 模式)。
  3. 如果采用的是 Write back,Cache line 会被标为 dirty,等到此行被 evicted 时,才会执行实际的写操作,将 Cache Line 里面的数据写入到相应的存储区。
  4. Cache 命中是访问的地址落在了给定的 Cache Line 里面,所以硬件需要做少量的地址比较工作,以检查此地址是否被缓存。如果命中了,将用于缓存读操作或者写操作。如果没有命中,则分配和标记新行,填充新的读写操作。如果所有行都分配完毕了,Cache 控制器将支持 eviction 操作。根据 Cache Line 替换算法,一行将被清除 Clean,无效化 Invalid 或者重新配置。数据缓存和指令缓存是采用的伪随机替换算法。
  5. Cache 支持的 4 种基本操作,使能,禁止,清空和无效化。Clean 清空操作是将 Cache Line 中标记为 dirty 的数据写入到内存里面,而无效化 Invalid 是将 Cache Line 标记为无效,即删除操作。

Cache的推荐配置和隐患

推荐使用 128KB 的 TCM 作为主 RAM 区其它的专门用于大缓冲和 DMA 操作等
Cache 问题主要是 CPU 和 DMA 都操作这个缓冲区时容易出现,使用时要注意。
Cache 配置的选择,优先考虑的是 WB,然后是 WT 和关闭 Cache,其中 WB 和 WT 的使用中可以配合 ARM 提供的函数解决上面说到的隐患问题(见本章 24.6 小节)。但不是万能的,在不起作用的时候,直接暴力选择函数 SCB_CleanInvlaidateDCache 解决。关于这个问题,在分别配置以太网MAC 的描述符缓冲区,发送缓冲区和接收缓冲区时尤其突出。

这篇关于STM32H7的Cache学习和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901510

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

使用Spring Cache时设置缓存键的注意事项详解

《使用SpringCache时设置缓存键的注意事项详解》在现代的Web应用中,缓存是提高系统性能和响应速度的重要手段之一,Spring框架提供了强大的缓存支持,通过​​@Cacheable​​、​​... 目录引言1. 缓存键的基本概念2. 默认缓存键生成器3. 自定义缓存键3.1 使用​​@Cacheab

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用