深度学习时代,调包侠没有未来,但是这个“包”有

2024-04-13 21:48

本文主要是介绍深度学习时代,调包侠没有未来,但是这个“包”有,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:AI科技评论

本文长度为2300字,建议阅读5分钟

本文为大家介绍了NumPy的现状。

工欲善其事必先利其器~

今日我“代码之神”把装备拉满,势必要大干一场!

在编程中只会Hello World 指定不行(说的不就是小陈自己嘛)。

那深度学习领域,只会import numpy as np能行吗?

当然不行!

我想至少还要会 import tensorflow as pytorch!

玩笑归玩笑,大家都知道最近算法岗面试不止是诸神黄昏了,已经发展到了灰飞烟灭的程度了(虽然有些夸张),贾扬清前些天也说过调参侠没有未来。

那么作为调参侠的哥们调包侠呢,估计也不一定会有未来,那这会代表这个“包”也没有未来吗?

今天我们就以NumPy举例。

1. NumPy现状

目前做人工智能大概离不开深度学习-->做深度学习八成离不开Tensorflow、 Pytorch等框架-->使用这些框架那就离不开Python-->涉及到数值计算那就离不开NumPy。

一句话:深度学习时代,很难离开NumPy!

就在近日,历时15年!NumPy 核心开发团队共26人的心血,终于汇聚成一篇论文发表在 Nature 上!论文主要是详细介绍了数组编程(Array programming)。

哇!从十五年前的角度来看,NumPy的“未来”很棒啊!

Numpy团队也是很开心地把这一消息转发到了推特上,目前转发量已超过3.6k。

2. NumPy应用

在这篇论文中,作者提到NumPy在物理、化学、天文学、地球科学、生物学、心理学、材料科学、工程学、金融和经济学等领域的研究分析中发挥着重要作用。

都有哪些重要作用呢?这里先拿天文学举例。

NumPy是用于发现引力波和黑洞第一次成像的软件栈的重要组成部分。

NumPy用于黑洞成像

当然了,大家都知道了真正的黑洞不是下面这个网页版黑洞:

也不是下面这样很拉丝很炫酷的黑洞:

而是这样的“蜂窝煤之眼”的黑洞:

黑洞 M87 (图片来源: Event Horizon Telescope Collaboration)

NumPy使研究人员能够通过其有效且通用的n维数组来操纵大型数值数据集,从而为用于生成黑洞历史图像的软件奠定了基础。

下图是利用NumPy的过程:

NumPy发现引力波

1916年,爱因斯坦预测了引力波的存在,100年之后,引力波的存在被LIGO科学家证实;其中NumPy在引力波的发现中起到了关键作用。

当然引力波也不是下面这个双龙戏珠的样子:

而或许可能是这个骷髅之脸的样子?

当时收集到的引力波数据很难使用任何技术来计算,而NumPy却作为LIGO GW检测项目期间执行的各种任务的软件成功派上了用场,它帮助高速解决了复杂的数学和数据处理问题。这里有些例子:

  • 信号处理:毛刺数据检测, 噪声识别和数据表征 (NumPy,scikit-learn,scipy,matplotlib,pandas,pyCharm)

  • 数据检索:确定可以分析哪些数据,弄清楚它是否包含信号-大海捞针

  • 统计分析:估计观测数据的统计显着性,并通过与模型比较来估计信号参数(例如,恒星质量,自旋速度和距离)。

  • 数据可视化

其中无论是用于黑洞成像还是引力波,都利用了Numpy三项的关键功能:

NumPy用于数据可视化:

NumPy是迅速发展的Python可视化领域的重要组成部分 ,其中包括 Matplotlib, Seaborn, Plotly, Altair, Bokeh, Holoviz, Vispy和 Napari等。

NumPy对大型数组的加速处理使研究人员可以可视化远超过本机Python可以处理的数据集。

以下是一些NumPy数据可视化的样例:

             

3. NumPy详细介绍

数组编程为访问、操作和计算向量、矩阵和高维数组中的数据提供了一种强大、紧凑且表达力强悍的语法,NumPy是Python语言的主要数组编程库。

NumPy是构建科学Python生态系统的基础。它的应用十分普遍,由于它在生态系统中居于核心地位,NumPy越来越多地充当这些数组计算库之间的互操作层,并与其API一起提供了一个灵活的框架来支持下一个十年的科学和工业分析。

NumPy 数组

Numpy 是 Python 数据科学计算的核心库,提供了高性能的多维数组对象及处理数组的工具。

(图源:DataCamp)

NumPy 数组包括多种基础数组概念,在数组维度上的变化操作十分灵活:

NumPy是Python 生态系统的基础

它与SciPy 和 Matplotlib 紧密相关。SciPy 为科学计算提供了基础算法,Matplotlib 则用作可视化。NumPy、SciPy 和 Matplotlib 的结合,再加上 IPython、Jupyter 这类高级交互环境,为 Python 中的数组编程提供了夯实的基础。

下图是Python系统的生态树,可以看出NumPy处于底层支持位置。

而如下图所示,NumPy 的 API 和数组协议向生态系统提供了新的数组:

现在,这些数组协议是 NumPy 的主要特征,它们的重要性预计也会越来越大。NumPy 开发者(本篇论文作者)迭代地改善和设计协议,以改进生态的实用性和简化应用方式。

4. NumPy过去、现在和未来

过去

NumPy最初是由学生、教师和研究人员开发的,目的是为Python提供一个高级的、开源的数组编程库,它可以免费使用,不受许可服务器和软件保护软件狗的阻碍。

有一种感觉是为了其他人的利益而共同建设一些重要的东西。在一个由志同道合的人组成的社区内参与这样一项努力,对许多早期的贡献者具有强大的吸引力。

这些用户-开发人员经常不得不从头开始编写代码来解决他们自己或同事的问题,这些代码通常使用Python之前的低级语言,如Fortran46和C。

现在

现在,大量的科学工作都依赖于NumPy的正确、快速和稳定的特性,它不再是一个小型的社区项目,而是核心的科学基础设施。

也就是说,NumPy的发展仍然很大程度上依赖于研究生和研究人员在空闲时间所做的贡献。

NumPy不再仅仅是科学Python生态系统的基础数组库,它已经成为张量计算的标准API和Python中数组类型和技术之间的中心协调机制。

未来

在接下来的十年里,NumPy的开发者们将面临几个挑战。

  • 新的设备将被开发,现有的专用硬件将进化以满足摩尔定律的递减收益。

  • 数据科学从业者将有更多、更广泛的种类,其中很大一部分人将使用NumPy。

  • 新一代语言、解释器和编译器,如Rust55、Julia56和LLVM57,将创造新的概念和数据结构,确定它们的生存能力。

NumPy准备迎接这样一个不断变化的局面,并继续在交互式科学计算中发挥主导作用,尽管这样做需要政府、学术界和工业界的持续资助。

但是,重要的是,为了满足下一个十年数据科学的需要,它还需要新一代的研究生和社区贡献者来推动它向前发展。

纵观全文,我们可以看到NumPy论文登顶Nature,它的基础之扎实、生态之强大,影响之广泛,它根本不会至止于深度学习,也不会止于下一个十年。

所以,以NumPy为例,调包侠不一定有未来 ,但是这个“包”会有。

那么如何能像NumPy一样也一路成长,不断扩展自己的技术栈和影响力呢做到何时都不被淘汰,这或许是个很大的挑战。

编辑:王菁

校对:汪雨晴

这篇关于深度学习时代,调包侠没有未来,但是这个“包”有的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901302

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

WiFi6时代来临! 华三H3C NX54路由器还值得购买吗?

《WiFi6时代来临!华三H3CNX54路由器还值得购买吗?》WiFi6时代已经来临,众多路由器厂商也纷纷推出了兼容WiFi6协议的路由器,今天我们将深入体验H3CNX54路由器,这款由知名企业... 随着科技的发展,WiFi6逐渐走进了我们的日常生活之中,相比WiFi5来说,WiFi6拥有更高的带宽、更高

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动