向量数据库Chroma学习记录

2024-04-13 19:28

本文主要是介绍向量数据库Chroma学习记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 简介

Chroma是一款AI开源向量数据库,用于快速构建基于LLM的应用,支持Python和Javascript语言。具备轻量化、快速安装等特点,可与Langchain、LlamaIndex等知名LLM框架组合使用。
在这里插入图片描述

二 基本用法

1 安装

安装方式非常简单,只需要一行命令

pip instakk chromadb

2 创建一个客户端

import chromadb
chroma_client = chromadb.Client()

3 创建一个集合

这里面的集合用于存放向量以及元数据的信息,可以理解为传统数据库的一张表

collection = chroma_client.create_collection(name="my_collection")

4 添加数据

集合中可以添加文本,元信息,以及序号等数据。添加文本之后会调用默认的嵌入模型对文本进行向量化表示。
documents和ids为必需项,其他为可选项。(metadatas、embeddings、urls、data)

collection.add(documents=["This is a document", "This is another document"],metadatas=[{"source": "my_source"}, {"source": "my_source"}],ids=["id1", "id2"]
)

如果已经有文本的向量化表示,可以直接添加进embedding字段。需要注意手动添加的向量的维度需要与初始化集合时用到的嵌入模型维度一致,否则会报错。

collection.add(embeddings=[[1.2, 2.3, 4.5], [6.7, 8.2, 9.2]],documents=["This is a document", "This is another document"],metadatas=[{"source": "my_source"}, {"source": "my_source"}],ids=["id1", "id2"]
)

5 从集合中检索

results = collection.query(query_texts=["This is a query document"],n_results=2
)

三 进阶用法

创建本地数据存放路径

前面代码中创建的集合不会落到数据盘中,只用于快速搭建项目原型,程序退出即消失。如果想使集合可以重复利用,只需要稍微修改一下代码即可:

# Client改为PersistentClient
client = chromadb.PersistentClient(path="/path/to/save/to")

客户端/服务端部署

实际项目一般不会只有客户端代码,因此chroma也被设计成可以客户端-服务端方式进行部署

服务端启动命令:

# --path参数可以指定数据持久化路径
# 默认开启8000端口
chroma run --path /db_path

客户端连接命令:

import chromadb
client = chromadb.HttpClient(host='localhost', port=8000)

如果你负责的项目只需要维护客户端的数据,则可以安装更加轻量化的客户端chroma

pip install chromadb-client

在客户端,连接方式同前面一样。chromadb-client相比完整版减少很多依赖项,特别是不支持默认的embedding模型了,因此必须自定义embedding function对文本进行向量化表示。

创建或选择已有的集合:

# 创建名称为my_collection的集合,如果已经存在,则会报错
collection = client.create_collection(name="my_collection", embedding_function=emb_fn)
# 获取名称为my_collection的集合,如果不存在,则会报错
collection = client.get_collection(name="my_collection", embedding_function=emb_fn)
# 获取名称为my_collection的集合,如果不存在,则创建
collection = client.get_or_create_collection(name="my_collection", embedding_function=emb_fn)

探索集合

# 返回集合中的前10条记录
collection.peek() 
# 返回集合的数量
collection.count() 
# 重命名集合
collection.modify(name="new_name") 

操作集合

集合的增用add来实现,前面已有,这里不赘述

集合的查找包含queryget两个接口

# 可以用文本进行查找,会调用模型对文本进行向量化表示,然后再查找出相似的向量
collection.query(query_texts=["doc10", "thus spake zarathustra", ...],n_results=10,where={"metadata_field": "is_equal_to_this"},where_document={"$contains":"search_string"}
)# 也可以用向量进行查找
collection.query(query_embeddings=[[11.1, 12.1, 13.1],[1.1, 2.3, 3.2], ...],n_results=10,where={"metadata_field": "is_equal_to_this"},where_document={"$contains":"search_string"}
)

where和where_document分别对元信息和文本进行过滤。这部分的过滤条件比较复杂,可以参考官方的说明文档。个人感觉有点多余了,对于这种轻量化数据库以及AI应用来说必要性不强。

collection.get(ids=["id1", "id2", "id3", ...],where={"style": "style1"},where_document={"$contains":"search_string"}
)

get更像是传统意义上的select操作,同样也支持where和where_document两个过滤条件。

集合的删除操作通过指定ids实现,如果没有指定ids,则会删除满足where的所有数据

collection.delete(ids=["id1", "id2", "id3",...],where={"chapter": "20"}
)

集合的修改也是通过指定id实现,如果id不存在,则会报错。如果更新的内容是documents,则连同对应的embeddings都一并更新

collection.update(ids=["id1", "id2", "id3", ...],embeddings=[[1.1, 2.3, 3.2], [4.5, 6.9, 4.4], [1.1, 2.3, 3.2], ...],metadatas=[{"chapter": "3", "verse": "16"}, {"chapter": "3", "verse": "5"}, {"chapter": "29", "verse": "11"}, ...],documents=["doc1", "doc2", "doc3", ...],
)

自定义embedding函数

在这里插入图片描述
chroma支持多种向量化模型,除此之外还能自定义模型。下面是一个用text2vec模型来定义embedding function的例子:

from chromadb import Documents, EmbeddingFunction, Embeddings
from text2vec import SentenceModel# 加载text2vec库的向量化模型
model = SentenceModel('text2vec-chinese')# Documents是字符串数组类型,Embeddings是浮点数组类型
class MyEmbeddingFunction(EmbeddingFunction):def __call__(self, input: Documents) -> Embeddings:# embed the documents somehowreturn model.encode(input).tolist()

多模态

chroma的集合支持多模态的数据存储和查询,只需要embedding function能对多模型数据进行向量化表示即可。官方给出了以下例子:

import chromadb
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
from chromadb.utils.data_loaders import ImageLoader# 用到了Openai的CLIP文字-图片模型
embedding_function = OpenCLIPEmbeddingFunction()
# 还需要调用一个内置的图片加载器
data_loader = ImageLoader()
client = chromadb.Client()collection = client.create_collection(name='multimodal_collection', embedding_function=embedding_function, data_loader=data_loader)

往集合中添加numpy类型的图片

collection.add(ids=['id1', 'id2', 'id3'],images=[...] # A list of numpy arrays representing images
)

与文本检索类似,只是变成了query_images而已

results = collection.query(query_images=[...] # A list of numpy arrays representing images
)

这篇关于向量数据库Chroma学习记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901006

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

SQL Server数据库磁盘满了的解决办法

《SQLServer数据库磁盘满了的解决办法》系统再正常运行,我还在操作中,突然发现接口报错,后续所有接口都报错了,一查日志发现说是数据库磁盘满了,所以本文记录了SQLServer数据库磁盘满了的解... 目录问题解决方法删除数据库日志设置数据库日志大小问题今http://www.chinasem.cn天发

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert