1.5K star量,上古老番变4K,B站开源超分辨率算法

2024-04-13 18:58

本文主要是介绍1.5K star量,上古老番变4K,B站开源超分辨率算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

b3295cac4e6920f26b607114ce90698d.png

来源:机器之心
本文约1200字,建议阅读5分钟
本文为你介绍B站AI实验室的最新成果。

喜欢看动漫的人经常会被一些经典作品的情节所吸引,不过画面质量是欣赏下去的大敌 —— 那些超过十年历史的内容自不必说,直到现在,很多动画的实际分辨率也只是 720p 左右,然后被拉伸到 1080i 以满足电视台播放的需求,BD(蓝光)清晰度也只有 1080p。

究其原因,还是成本问题:在动画制作过程中,让分辨率提升一个级别,就会导致所有的制作资源大幅提升,从作画、扫描到处理和存储,整个产业链条都需要软硬件的提升。

77f159d2f2c11279b0324b5b78146c55.png

但今天即使是手机也有个 2K 的分辨率,既然手绘动画难以提升分辨率,那么能不能用 AI 算法来解决这个问题?

最近,GitHub 上一个图像超分辨率的项目火了,一个叫做 Real-CUGAN 的工具可以把动画图像的质量提升 2 到 4 倍,qq 上斗图的表情包也能给你脑补成 4k 品质。

14a8afe3479f6181a7fa0a43f1ab50ae.gif

仔细一看,这个项目来自 bilibili 人工智能实验室。上线 20 天,star 量已达 1.5K。

d254dc157a7e30c0fef70e2d50158048.png

项目链接:

https://github.com/bilibili/ailab/tree/main/Real-CUGAN

据作者介绍,Real-CUGAN 是一个使用百万级动漫数据进行训练的,结构与 Waifu2x 兼容的通用动漫图像超分辨率模型。相比目前市面上已有的通用化超分辨率算法,Real-CUGAN 的 AI 模型经过了更大体量数据集的训练,处理二次元内容的效果更佳。

它支持 2x\3x\4x 倍超分辨率,其中 2 倍模型支持 4 种降噪强度与保守修复,3 倍 / 4 倍模型支持 2 种降噪强度与保守修复。

Real-CUGAN 全称为 Real Cascaded-U-Net-style Generative Adversarial Networks(真实的、级联 U-Net 风格的生成对抗网络),使用了与 Waifu2x 相同的动漫网络结构,但因为使用了新的训练数据与训练方法,从而形成了不同的参数。

具体来说,该动漫超分模型训练先行对动漫帧进行切块处理,使用图像质量打分模型对候选块进行打分过滤,得到一个百万级的高质量动漫图像块训练集。然后使用多阶段降质算法,将高清图像块降采样得到低质图像,让 AI 模型学习、优化从低质图像到高质图像的重建过程,训练完毕后即可对真实的二次元低质图像进行高清化处理。

在 GitHub 项目中,作者开源了推理阶段的模型参数与推理代码。

下面,我们来看一下 Real-CUGAN 的修复效果。

7146aac1315801da7566cab50f9cd440.gif

图源:https://github.com/bilibili/ailab/tree/main/Real-CUGAN

为了进一步查看几种修复方法的差距,研究团队将 Real-CUGAN 的修复效果和 Waifu2x、RealESRGAN 进行比较。

d5463974a2ccbbfa62ee2a99df013c0f.png

下图是动漫《侦探已死》中的画面,其中几种方法对沙发纹理的修复差距显著。可以看到,在 Real-CUGAN 的修复结果中,沙发上的横向条纹清晰可见,并且几乎没有中断的部分:

3344e6ccd6cb7f3a6dd2f75e372baabb.png

在动漫中,人物清晰的线条对角色形象的塑造具有重要的作用。线条模糊会严重影响观看体验。以下图为例,Real-CUGAN 清晰地修复了动漫中角色的表情线条:

8f090436e7830a54f7804aa09ca50eff.png

当然,有些场景并非越清晰越好,比如画面中的一些远景,原本就是刻意虚化的。以下图为例,Real-CUGAN 修复之后,近景处的人物形象变得更清晰,远处的蜡烛仍然保持模糊,使得画面更有层次感。

a51ad56a7cd90067ac01555bcfd02c2c.png

还有一些动漫由于年代久远,受当时技术条件的限制,画质着实「感人」。例如许多人的童年回忆《黑猫警长》,先前的模型 RealESRGAN(下图第三列)已获得了不错的修复效果。相比之下 Real-CUGAN(下图第四列)更好地修复了一些杂线、模糊的问题,让画面更加干净清晰。

154b2b1be75bf7781dc0ac8d924b62bb.png

更为重要的是这项技术想要用很简单:你下载的模型已训练好,修改 config.py 配置参数,双击 go.bat 运行即可。Real-CUGAN 不仅可用 cuda 加速,也支持 AMD 系列的显卡,处理速度还很快,笔记本电脑也可以跑得起来。

虽然 Real-CUGAN 默认是只处理静态图片的,但很多人已尝试把视频拆解成单帧序列进行处理。如此一来,很多上古老番都能自己上手让它们焕然一新了。

目前 B 站上已经有人上传了一些使用新技术处理过的视频,比如这个在 1080p BD 基础上超分到 4K 的:

在很多电影修复之后,老番高清计划也已在路上。B 站表示,将针对不同品类适配不同的超分算法,并且使用窄带高清算法降低卡顿,提高流畅度。

参考内容:

https://www.bilibili.com/read/cv15031073

编辑:于腾凯

c820428840e61386a36570f14d10a69d.png

这篇关于1.5K star量,上古老番变4K,B站开源超分辨率算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900953

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。