MindOpt APL向量化建模语法的介绍与应用(2)

2024-04-13 13:52

本文主要是介绍MindOpt APL向量化建模语法的介绍与应用(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在数据科学、工程优化和其他科学计算领域中,向量和矩阵的运算是核心组成部分。MAPL作为一种数学规划语言,为这些领域的专业人员提供了强大的工具,通过向量式和矩阵式变量声明以及丰富的内置数学运算支持,大大简化了数学建模和优化问题的处理。在本文中,我们将探索MAPL的这些特性,并且通过示例来展示如何有效使用这些工具。

介绍与应用

矩阵和向量变量声明

在MAPL中,向量和矩阵变量的声明非常直观。例如,使用var X(3,2)可以创建一个3行2列的矩阵,而使用var Y(3)会创建一个包含3个元素的列向量。对这些变量的操作,如索引(X[1,0])和赋予初值,都可以使用易于理解的语法来完成。

var X(3,2) >=0 integer;print "Structure of X is:";
print X;print "----------------";
print "Sample Entries:";
print X[0,0];
print X[1,1];
print X[2,1];

结果如下:

Structure of X is:
[[ X0,  X1],[ X2,  X3],[ X4,  X5]]
----------------
Sample Entries:
+ [0, 0] -> integer [LB, UB, SOLN-VAl] = [0.000000, +inf, 0.000000
+ [1, 1] -> integer [LB, UB, SOLN-VAl] = [0.000000, +inf, 0.000000]
+ [2, 1] -> integer [LB, UB, SOLN-VAl] = [0.000000, +inf, 0.000000]

张量运算支持

张量运算是MAPL中一项强大的特性,它允许我们使用类似于线性代数中的标准操作符,例如:

  • 加法和减法(+,-):逐元素进行操作,要求操作数尺寸相同。
  • 乘法(*):支持标量和矩阵的乘法,以及矩阵与向量之间的乘法,必须满足传统的行列匹配规则。
  • 转置('):快速提供变量的转置形式,仅适用于矩阵。
  • 点乘(.*):逐元素乘法,用于两个相同尺寸的矩阵或向量。| 类型 | 操作符 | 说明 | 是否支持标量 | 用例 |
    | ---------- | ------ | ------------------------- | ------------ | ----------------- |
    | 一元操作符 | + | 向量/矩阵加法 | 是 | X+Y |
    | | - | 向量/矩阵减法,或者求反 | 是 | X-Y or -X |
    | | .* | 逐元素乘法 | 否 | X.*Y |
    | | * | 向量/矩阵乘法 | 是 | X*Y |
    | | ' | 矩阵转置 | 否 | X' |
    | | / | 向量/矩阵逐元素除以某标量 | 是 | X/2 |
    | 二元操作符 | ^ | 逐元素的p次幂 | 是 | X^2 |
    | 索引操作符 | [] | 获取指定位置的值 | 否 | X[3], Y[3,5] |

这些运算符为建模提供了极大的灵活性和表现力,支持以直观和自然的方式表达数学关系。

映射函数

映射函数是处理张量式变量必不可少的一部分,使建模张量间的函数变换更方便。MAPL提供了一系列映射函数,如exp、log和sin等,它们可以逐元素应用于向量或矩阵。例如,对于一个矩阵A,exp(A)会计算A中每个元素的指数值。

clear model;
var x(3,2) >=0;A = exp(x);print A;

运行上述代码,结果如下:

[[e^(x0), e^(x1)],[e^(x2), e^(x3)],[e^(x4), e^(x5)]]

混合计算和表达式引用

MAPL不仅支持张量间的运算,还支持张量和标量之间的混合计算。此外,它允许用户为复杂的表达式命名,以便于后续引用,这样可以避免重复的计算,并使模型清晰易于管理。

var x >=0;
var y(3,4);A = x + y;
B = y + x;
C = x - y;
D = y - x;
E = -y;
F = x*y;print y;
print A;
print B;
print C;
print D;
print E;
print F;

输出如下:

[[ y0,  y1,  y2,  y3],[ y4,  y5,  y6,  y7],[ y8,  y9, y10, y11]][[ x+y0,  x+y1,  x+y2,  x+y3],[ x+y4,  x+y5,  x+y6,  x+y7],[ x+y8,  x+y9, x+y10, x+y11]][[ y0+x,  y1+x,  y2+x,  y3+x],[ y4+x,  y5+x,  y6+x,  y7+x],[ y8+x,  y9+x, y10+x, y11+x]][[ x-y0,  x-y1,  x-y2,  x-y3],[ x-y4,  x-y5,  x-y6,  x-y7],[ x-y8,  x-y9, x-y10, x-y11]][[ y0-x,  y1-x,  y2-x,  y3-x],[ y4-x,  y5-x,  y6-x,  y7-x],[ y8-x,  y9-x, y10-x, y11-x]][[ -y0,  -y1,  -y2,  -y3],[ -y4,  -y5,  -y6,  -y7],[ -y8,  -y9, -y10, -y11]][[ x*y0,  x*y1,  x*y2,  x*y3],[ x*y4,  x*y5,  x*y6,  x*y7],[ x*y8,  x*y9, x*y10, x*y11]]

一个完整示例

带资源上限约束的二分匹配问题(也称为加权二分匹配问题或指派问题)是图论中的一个经典问题,它的目的是在二分图中找到最优的匹配,使得匹配的总权重最大,同时不超过给定的资源上限。
线性数学建模如下:
image.png
向量形式:
image.png
代码建模如下,可复制在云上平台直接运行:

########################################
#
#   向量式建模案例
#   Weighted Bipartite Matching
#
######################################### 1.读取权重及损耗矩阵
param W  = read_csv("weight.data");
param C  = read_csv("cost.data");param m = W.row;
param n = W.col;############## 2.问题建模 ###############
# 定义矩阵形式变量X,表示可行的匹配
var X(m, n) binary; # 3.二分匹配问题建模
maximize sum(W.*X);# A集合的资源上限约束
s.t. (C.*X)*ones(n,1) <= 10;
# B集合的资源上限约束
s.t. ones(1,m)*(C.*X) <= 10;# 集合A中每个节点最多匹配一次
s.t. X * ones(n, 1) <= 1;
# 集合B中每个节点最多匹配一次
s.t. ones(1, m) * X <= 1;############## 问题求解 #################
# 3.调用mindopt求解
option solver mindopt;
solve;############## 结果分析 #################
# 输出最优目标函数值
param obj = sum(W.*X);
print "Optimal obj is: {:.2f}" % obj;# 输出最优匹配
print "Optimal X is";
print X;
#######################################

输出结果如下:

Running mindoptampl
wantsol=1
MindOpt Version 1.0.1 (Build date: 20231114)
Copyright (c) 2020-2023 Alibaba Cloud.Start license validation (current time : 05-FEB-2024 10:34:07).
License validation terminated. Time : 0.008sModel summary.- Num. variables     : 50- Num. constraints   : 30- Num. nonzeros      : 200- Num. integer vars. : 50- Bound range        : [1.0e+00,1.0e+01]- Objective range    : [4.0e-01,9.8e+00]Branch-and-cut method started.
Original model: nrow = 30 ncol = 50 nnz = 200
Tolerance: primal = 1e-06 int = 1e-06 mipgap = 0.0001 mipgapAbs = 1e-06
Limit: time = 1.79769313486232e+308 node = -1 stalling = -1 solution = -1
presolver terminated; took 1 ms
presolver terminated; took 3 ms
Parallelism: root=8, tree=10accept new sol: obj 0 bnd vio 0 int vio 0 mipgap inf time 0accept new sol: obj -42.8999996185303 bnd vio 0 int vio 0 mipgap 4.55011660905533 time 0
Model summary.- Num. variables     : 48- Num. constraints   : 15- Num. nonzeros      : 96- Bound range        : [1.0e+00,1.0e+00]- Objective range    : [4.0e-01,9.8e+00]- Matrix range       : [1.0e+00,1.0e+00]Presolver started.
Presolver terminated. Time : 0.002sSimplex method started.
Model fingerprint: ==gZ3Fmb392Y3JmZIteration       Objective       Dual Inf.     Primal Inf.     Time0    -2.38100e+02      0.0000e+00      8.1000e+01     0.03s  6    -4.29000e+01      0.0000e+00      0.0000e+00     0.03s  
Postsolver started.
Simplex method terminated. Time : 0.007sRoot relaxation: -42.8999996185303 iteration = 6 time = 0.03
Branch-and-cut method terminated. Time : 0.548sOPTIMAL; objective 42.90Completed.Optimal obj is: 42.90
Optimal Matching X is
[[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 1, 0, 0]]

完整案例介绍:案例1:加权二分匹配(Weighted Bipartite Matching)
详细语法:向量化建模

结论:

MAPL作为一种先进的建模语言,通过支持向量和矩阵的声明以及丰富的运算操作符和映射函数,为用户处理多维数据提供了强大的工具集。无论是在学术研究还是工业应用中,MAPL的这些特点都显著地提高了数学建模的效率和便捷性。

这篇关于MindOpt APL向量化建模语法的介绍与应用(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900320

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/