MindOpt APL向量化建模语法的介绍与应用(2)

2024-04-13 13:52

本文主要是介绍MindOpt APL向量化建模语法的介绍与应用(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在数据科学、工程优化和其他科学计算领域中,向量和矩阵的运算是核心组成部分。MAPL作为一种数学规划语言,为这些领域的专业人员提供了强大的工具,通过向量式和矩阵式变量声明以及丰富的内置数学运算支持,大大简化了数学建模和优化问题的处理。在本文中,我们将探索MAPL的这些特性,并且通过示例来展示如何有效使用这些工具。

介绍与应用

矩阵和向量变量声明

在MAPL中,向量和矩阵变量的声明非常直观。例如,使用var X(3,2)可以创建一个3行2列的矩阵,而使用var Y(3)会创建一个包含3个元素的列向量。对这些变量的操作,如索引(X[1,0])和赋予初值,都可以使用易于理解的语法来完成。

var X(3,2) >=0 integer;print "Structure of X is:";
print X;print "----------------";
print "Sample Entries:";
print X[0,0];
print X[1,1];
print X[2,1];

结果如下:

Structure of X is:
[[ X0,  X1],[ X2,  X3],[ X4,  X5]]
----------------
Sample Entries:
+ [0, 0] -> integer [LB, UB, SOLN-VAl] = [0.000000, +inf, 0.000000
+ [1, 1] -> integer [LB, UB, SOLN-VAl] = [0.000000, +inf, 0.000000]
+ [2, 1] -> integer [LB, UB, SOLN-VAl] = [0.000000, +inf, 0.000000]

张量运算支持

张量运算是MAPL中一项强大的特性,它允许我们使用类似于线性代数中的标准操作符,例如:

  • 加法和减法(+,-):逐元素进行操作,要求操作数尺寸相同。
  • 乘法(*):支持标量和矩阵的乘法,以及矩阵与向量之间的乘法,必须满足传统的行列匹配规则。
  • 转置('):快速提供变量的转置形式,仅适用于矩阵。
  • 点乘(.*):逐元素乘法,用于两个相同尺寸的矩阵或向量。| 类型 | 操作符 | 说明 | 是否支持标量 | 用例 |
    | ---------- | ------ | ------------------------- | ------------ | ----------------- |
    | 一元操作符 | + | 向量/矩阵加法 | 是 | X+Y |
    | | - | 向量/矩阵减法,或者求反 | 是 | X-Y or -X |
    | | .* | 逐元素乘法 | 否 | X.*Y |
    | | * | 向量/矩阵乘法 | 是 | X*Y |
    | | ' | 矩阵转置 | 否 | X' |
    | | / | 向量/矩阵逐元素除以某标量 | 是 | X/2 |
    | 二元操作符 | ^ | 逐元素的p次幂 | 是 | X^2 |
    | 索引操作符 | [] | 获取指定位置的值 | 否 | X[3], Y[3,5] |

这些运算符为建模提供了极大的灵活性和表现力,支持以直观和自然的方式表达数学关系。

映射函数

映射函数是处理张量式变量必不可少的一部分,使建模张量间的函数变换更方便。MAPL提供了一系列映射函数,如exp、log和sin等,它们可以逐元素应用于向量或矩阵。例如,对于一个矩阵A,exp(A)会计算A中每个元素的指数值。

clear model;
var x(3,2) >=0;A = exp(x);print A;

运行上述代码,结果如下:

[[e^(x0), e^(x1)],[e^(x2), e^(x3)],[e^(x4), e^(x5)]]

混合计算和表达式引用

MAPL不仅支持张量间的运算,还支持张量和标量之间的混合计算。此外,它允许用户为复杂的表达式命名,以便于后续引用,这样可以避免重复的计算,并使模型清晰易于管理。

var x >=0;
var y(3,4);A = x + y;
B = y + x;
C = x - y;
D = y - x;
E = -y;
F = x*y;print y;
print A;
print B;
print C;
print D;
print E;
print F;

输出如下:

[[ y0,  y1,  y2,  y3],[ y4,  y5,  y6,  y7],[ y8,  y9, y10, y11]][[ x+y0,  x+y1,  x+y2,  x+y3],[ x+y4,  x+y5,  x+y6,  x+y7],[ x+y8,  x+y9, x+y10, x+y11]][[ y0+x,  y1+x,  y2+x,  y3+x],[ y4+x,  y5+x,  y6+x,  y7+x],[ y8+x,  y9+x, y10+x, y11+x]][[ x-y0,  x-y1,  x-y2,  x-y3],[ x-y4,  x-y5,  x-y6,  x-y7],[ x-y8,  x-y9, x-y10, x-y11]][[ y0-x,  y1-x,  y2-x,  y3-x],[ y4-x,  y5-x,  y6-x,  y7-x],[ y8-x,  y9-x, y10-x, y11-x]][[ -y0,  -y1,  -y2,  -y3],[ -y4,  -y5,  -y6,  -y7],[ -y8,  -y9, -y10, -y11]][[ x*y0,  x*y1,  x*y2,  x*y3],[ x*y4,  x*y5,  x*y6,  x*y7],[ x*y8,  x*y9, x*y10, x*y11]]

一个完整示例

带资源上限约束的二分匹配问题(也称为加权二分匹配问题或指派问题)是图论中的一个经典问题,它的目的是在二分图中找到最优的匹配,使得匹配的总权重最大,同时不超过给定的资源上限。
线性数学建模如下:
image.png
向量形式:
image.png
代码建模如下,可复制在云上平台直接运行:

########################################
#
#   向量式建模案例
#   Weighted Bipartite Matching
#
######################################### 1.读取权重及损耗矩阵
param W  = read_csv("weight.data");
param C  = read_csv("cost.data");param m = W.row;
param n = W.col;############## 2.问题建模 ###############
# 定义矩阵形式变量X,表示可行的匹配
var X(m, n) binary; # 3.二分匹配问题建模
maximize sum(W.*X);# A集合的资源上限约束
s.t. (C.*X)*ones(n,1) <= 10;
# B集合的资源上限约束
s.t. ones(1,m)*(C.*X) <= 10;# 集合A中每个节点最多匹配一次
s.t. X * ones(n, 1) <= 1;
# 集合B中每个节点最多匹配一次
s.t. ones(1, m) * X <= 1;############## 问题求解 #################
# 3.调用mindopt求解
option solver mindopt;
solve;############## 结果分析 #################
# 输出最优目标函数值
param obj = sum(W.*X);
print "Optimal obj is: {:.2f}" % obj;# 输出最优匹配
print "Optimal X is";
print X;
#######################################

输出结果如下:

Running mindoptampl
wantsol=1
MindOpt Version 1.0.1 (Build date: 20231114)
Copyright (c) 2020-2023 Alibaba Cloud.Start license validation (current time : 05-FEB-2024 10:34:07).
License validation terminated. Time : 0.008sModel summary.- Num. variables     : 50- Num. constraints   : 30- Num. nonzeros      : 200- Num. integer vars. : 50- Bound range        : [1.0e+00,1.0e+01]- Objective range    : [4.0e-01,9.8e+00]Branch-and-cut method started.
Original model: nrow = 30 ncol = 50 nnz = 200
Tolerance: primal = 1e-06 int = 1e-06 mipgap = 0.0001 mipgapAbs = 1e-06
Limit: time = 1.79769313486232e+308 node = -1 stalling = -1 solution = -1
presolver terminated; took 1 ms
presolver terminated; took 3 ms
Parallelism: root=8, tree=10accept new sol: obj 0 bnd vio 0 int vio 0 mipgap inf time 0accept new sol: obj -42.8999996185303 bnd vio 0 int vio 0 mipgap 4.55011660905533 time 0
Model summary.- Num. variables     : 48- Num. constraints   : 15- Num. nonzeros      : 96- Bound range        : [1.0e+00,1.0e+00]- Objective range    : [4.0e-01,9.8e+00]- Matrix range       : [1.0e+00,1.0e+00]Presolver started.
Presolver terminated. Time : 0.002sSimplex method started.
Model fingerprint: ==gZ3Fmb392Y3JmZIteration       Objective       Dual Inf.     Primal Inf.     Time0    -2.38100e+02      0.0000e+00      8.1000e+01     0.03s  6    -4.29000e+01      0.0000e+00      0.0000e+00     0.03s  
Postsolver started.
Simplex method terminated. Time : 0.007sRoot relaxation: -42.8999996185303 iteration = 6 time = 0.03
Branch-and-cut method terminated. Time : 0.548sOPTIMAL; objective 42.90Completed.Optimal obj is: 42.90
Optimal Matching X is
[[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 1, 0, 0]]

完整案例介绍:案例1:加权二分匹配(Weighted Bipartite Matching)
详细语法:向量化建模

结论:

MAPL作为一种先进的建模语言,通过支持向量和矩阵的声明以及丰富的运算操作符和映射函数,为用户处理多维数据提供了强大的工具集。无论是在学术研究还是工业应用中,MAPL的这些特点都显著地提高了数学建模的效率和便捷性。

这篇关于MindOpt APL向量化建模语法的介绍与应用(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900320

相关文章

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys