Harmony鸿蒙南向驱动开发-SPI接口使用

2024-04-13 05:20

本文主要是介绍Harmony鸿蒙南向驱动开发-SPI接口使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

功能简介

SPI指串行外设接口(Serial Peripheral Interface),是一种高速的,全双工,同步的通信总线。SPI是由Motorola公司开发,用于在主设备和从设备之间进行通信。

SPI接口定义了操作SPI设备的通用方法集合,包括:

  • SPI设备句柄获取和释放。

  • SPI读写:从SPI设备读取或写入指定长度数据。

  • SPI自定义传输:通过消息传输结构体执行任意读写组合过程。

  • SPI设备配置:获取和设置SPI设备属性。

运作机制

在HDF框架中,SPI的接口适配模式采用独立服务模式,在这种模式下,每一个设备对象会独立发布一个设备服务来处理外部访问,设备管理器收到API的访问请求之后,通过提取该请求的参数,达到调用实际设备对象的相应内部方法的目的。独立服务模式可以直接借助HDFDeviceManager的服务管理能力,但需要为每个设备单独配置设备节点,若设备过多可能增加内存占用。

独立服务模式下,核心层不会统一发布一个服务供上层使用,因此这种模式下驱动要为每个控制器发布一个服务,具体表现为:

  • 驱动适配者需要实现HdfDriverEntry的Bind钩子函数以绑定服务。

  • device_info.hcs文件中deviceNode的policy字段为1或2,不能为0。

图 1 SPI独立服务模式结构图

SPI独立服务模式结构图

SPI模块各分层作用:

  • 接口层提供打开SPI设备、SPI写数据、SPI读数据、SPI传输、配置SPI设备属性、获取SPI设备属性、关闭SPI设备的接口。

  • 核心层主要提供SPI控制器的添加、移除以及管理的能力,通过钩子函数与适配层交互。

  • 适配层主要是将钩子函数的功能实例化,实现具体的功能。

SPI以主从方式工作,通常有一个主设备和一个或者多个从设备。主设备和从设备之间一般用4根线相连,它们分别是:

  • SCLK:时钟信号,由主设备产生;

  • MOSI:主设备数据输出,从设备数据输入;

  • MISO:主设备数据输入,从设备数据输出;

  • CS:片选,从设备使能信号,由主设备控制。

一个主设备和两个从设备的连接示意图如图2所示,Device A和Device B共享主设备的SCLK、MISO和MOSI三根引脚,Device A的片选CS0连接主设备的CS0,Device B的片选CS1连接主设备的CS1。

图 2 SPI主从设备连接示意图

SPI主从设备连接示意图

  • SPI通信通常由主设备发起,通过以下步骤完成一次通信:

    1. 通过CS选中要通信的从设备,在任意时刻,一个主设备上最多只能有一个从设备被选中。

    2. 通过SCLK给选中的从设备提供时钟信号。

    3. 基于SCLK时钟信号,主设备数据通过MOSI发送给从设备,同时通过MISO接收从设备发送的数据,完成通信。

  • 根据SCLK时钟信号的CPOL(Clock Polarity,时钟极性)和CPHA(Clock Phase,时钟相位)的不同组合,SPI有以下四种工作模式:

    • CPOL=0,CPHA=0 时钟信号idle状态为低电平,第一个时钟边沿采样数据。

    • CPOL=0,CPHA=1 时钟信号idle状态为低电平,第二个时钟边沿采样数据。

    • CPOL=1,CPHA=0 时钟信号idle状态为高电平,第一个时钟边沿采样数据。

    • CPOL=1,CPHA=1 时钟信号idle状态为高电平,第二个时钟边沿采样数据。

约束与限制

SPI模块当前只支持主机模式,不支持从机模式。

使用指导

场景介绍

SPI通常用于与闪存、实时时钟、传感器以及模数/数模转换器等支持SPI协议的设备进行通信。

接口说明

SPI模块提供的主要接口如表1所示,具体API详见//drivers/hdf_core/framework/include/platform/spi_if.h。

表 1 SPI驱动API接口功能介绍

接口名接口描述
DevHandle SpiOpen(const struct SpiDevInfo *info)获取SPI设备句柄
void SpiClose(DevHandle handle)释放SPI设备句柄
int32_t SpiRead(DevHandle handle, uint8_t *buf, uint32_t len)读取指定长度的数据
int32_t SpiWrite(DevHandle handle, uint8_t *buf, uint32_t len)写入指定长度的数据
int32_t SpiTransfer(DevHandle handle, struct SpiMsg *msgs, uint32_t count)SPI数据传输接口
int32_t SpiSetCfg(DevHandle handle, struct SpiCfg *cfg)根据指定参数,配置SPI设备
int32_t SpiGetCfg(DevHandle handle, struct SpiCfg *cfg)获取SPI设备配置参数

使用流程

使用SPI的一般流程如下图所示。

图 3 SPI使用流程图

SPI使用流程图

获取SPI设备句柄

在使用SPI进行通信时,首先要调用SpiOpen获取SPI设备句柄,该函数会返回指定总线号和片选号的SPI设备句柄。

DevHandle SpiOpen(const struct SpiDevInfo *info); 

表 2 SpiOpen参数和返回值描述

参数参数描述
info结构体类型,SPI设备描述符
返回值返回值描述
NULL获取SPI设备句柄失败
设备句柄获取对应的SPI设备句柄成功

假设系统中的SPI设备总线号为0,片选号为0,获取该SPI设备句柄的示例如下:

struct SpiDevInfo spiDevinfo;       // SPI设备描述符
DevHandle spiHandle = NULL;         // SPI设备句柄
spiDevinfo.busNum = 0;              // SPI设备总线号
spiDevinfo.csNum = 0;               // SPI设备片选号// 获取SPI设备句柄
spiHandle = SpiOpen(&spiDevinfo);
if (spiHandle == NULL) {HDF_LOGE("SpiOpen: spi open fail!\n");return HDF_FAILURE;
}
获取SPI设备属性

在获取到SPI设备句柄之后,需要配置SPI设备属性。配置SPI设备属性之前,可以先获取SPI设备属性,获取SPI设备属性的函数如下所示:

int32_t SpiGetCfg(DevHandle handle, struct SpiCfg *cfg);

表 3 SpiGetCfg参数和返回值描述

参数参数描述
handleDevHandle类型,SPI设备句柄
cfg结构体指针类型,SPI设备配置参数
返回值返回值描述
HDF_SUCCESS获取设备属性成功
负数获取设备属性失败
int32_t ret;
struct SpiCfg cfg = {0};                // SPI配置信息
ret = SpiGetCfg(spiHandle, &cfg);       // 获取SPI设备属性
if (ret != HDF_SUCCESS) {HDF_LOGE("SpiGetCfg: failed, ret %d\n", ret);return ret;
}
配置SPI设备属性

在获取到SPI设备句柄之后,需要配置SPI设备属性,配置SPI设备属性的函数如下所示:

int32_t SpiSetCfg(DevHandle handle, struct SpiCfg *cfg);

表 4 SpiSetCfg参数和返回值描述

参数参数描述
handleDevHandle类型,SPI设备句柄
cfg结构体指针类型,SPI设备配置参数
返回值返回值描述
HDF_SUCCESS配置设备属性成功
负数配置设备属性失败
int32_t ret;
struct SpiCfg cfg = {0};                     // SPI配置信息
cfg.mode = SPI_MODE_LOOP;                    // 以回环模式进行通信
cfg.transferMode = PAL_SPI_POLLING_TRANSFER; // 以轮询的方式进行通信
cfg.maxSpeedHz = 115200;                     // 最大传输频率
cfg.bitsPerWord = 8;                         // 读写位宽为8比特
ret = SpiSetCfg(spiHandle, &cfg);            // 配置SPI设备属性
if (ret != HDF_SUCCESS) {HDF_LOGE("SpiSetCfg: failed, ret %d\n", ret);return ret;
}
进行SPI通信
  • 向SPI设备写入指定长度的数据

    如果只向SPI设备写一次数据,则可以通过以下函数完成:

    int32_t SpiWrite(DevHandle handle, uint8_t *buf, uint32_t len);

    表 5 SpiWrite参数和返回值描述

    参数参数描述
    handleDevHandle类型,SPI设备句柄
    bufuint8_t类型指针,待写入数据
    lenuint32_t类型,待写入的数据长度
    返回值返回值描述
    HDF_SUCCESS写入成功
    负数写入失败
    int32_t ret;
    uint8_t wbuff[4] = {0x12, 0x34, 0x56, 0x78};
    // 向SPI设备写入指定长度的数据
    ret = SpiWrite(spiHandle, wbuff, 4);
    if (ret != HDF_SUCCESS) {HDF_LOGE("SpiWrite: failed, ret %d\n", ret);return ret;
    }
  • 从SPI设备读取指定长度的数据

    如果只读取一次数据,则可以通过以下函数完成:

    int32_t SpiRead(DevHandle handle, uint8_t *buf, uint32_t len); 

    表 6 SpiRead参数和返回值描述

    参数参数描述
    handleDevHandle类型,SPI设备句柄
    bufuint8_t类型指针,待读取数据
    lenuint32_t类型,待读取的数据长度
    返回值返回值描述
    HDF_SUCCESS读取成功
    负数读取失败
    int32_t ret;
    uint8_t rbuff[4] = {0};
    // 从SPI设备读取指定长度的数据
    ret = SpiRead(spiHandle, rbuff, 4);
    if (ret != HDF_SUCCESS) {HDF_LOGE("SpiRead: failed, ret %d\n", ret);return ret;
    }
  • 自定义传输

    如果需要发起一次自定义传输,则可以通过以下函数完成:

    int32_t SpiTransfer(DevHandle handle, struct SpiMsg *msgs, uint32_t count);

    表 7 SpiTransfer参数和返回值描述

    参数参数描述
    handleDevHandle类型,SPI设备句柄
    msgs结构体指针,待传输数据的数组
    countuint32_t类型,msgs数组长度
    返回值返回值描述
    HDF_SUCCESS传输执行成功
    负数传输执行失败
    int32_t ret;
    uint8_t wbuff[1] = {0x12};
    uint8_t rbuff[1] = {0};
    struct SpiMsg msg;        // 自定义传输的消息
    msg.wbuf = wbuff;         // 写入的数据
    msg.rbuf = rbuff;         // 读取的数据
    msg.len = 1;              // 读取、写入数据的长度都是1
    msg.csChange = 1;         // 进行下一次传输前关闭片选
    msg.delayUs = 0;          // 进行下一次传输前不进行延时
    msg.speed = 115200;       // 本次传输的速度
    // 进行一次自定义传输,传输的msg个数为1
    ret = SpiTransfer(spiHandle, &msg, 1);
    if (ret != HDF_SUCCESS) {HDF_LOGE("SpiTransfer: failed, ret %d\n", ret);return ret;
    }
销毁SPI设备句柄

SPI通信完成之后,需要销毁SPI设备句柄,销毁SPI设备句柄的函数如下所示:

void SpiClose(DevHandle handle);

该函数会释放掉申请的资源。

表 8 SpiClose参数描述

参数参数描述
handleDevHandle类型,SPI设备句柄
SpiClose(spiHandle); // 销毁SPI设备句柄

使用实例

本例拟对Hi3516DV300开发板上SPI设备进行操作。

SPI设备完整的使用示例如下所示,首先获取SPI设备句柄,然后配置SPI设备属性,接着调用读写接口进行数据传输,最后销毁SPI设备句柄。

#include "hdf_log.h"
#include "spi_if.h"void SpiTestSample(void)
{int32_t ret;struct SpiCfg cfg;                      // SPI配置信息struct SpiDevInfo spiDevinfo;           // SPI设备描述符DevHandle spiHandle = NULL;             // SPI设备句柄struct SpiMsg msg;                      // 自定义传输的消息uint8_t rbuff[4] = { 0 };uint8_t wbuff[4] = { 0x12, 0x34, 0x56, 0x78 };uint8_t wbuff2[4] = { 0xa1, 0xb2, 0xc3, 0xd4 };spiDevinfo.busNum = 0;                  // SPI设备总线号spiDevinfo.csNum = 0;                   // SPI设备片选号spiHandle = SpiOpen(&spiDevinfo);       // 根据spiDevinfo获取SPI设备句柄if (spiHandle == NULL) {HDF_LOGE("SpiTestSample: spi open fail!\n");return;}// 获取SPI设备属性ret = SpiGetCfg(spiHandle, &cfg);if (ret != HDF_SUCCESS) {HDF_LOGE("SpiTestSample: spi get cfg fail, ret:%d!\n", ret);goto err;}cfg.maxSpeedHz = 115200;                // 将最大时钟频率改为115200cfg.bitsPerWord = 8;                    // 传输位宽改为8比特// 配置SPI设备属性ret = SpiSetCfg(spiHandle, &cfg);if (ret != HDF_SUCCESS) {HDF_LOGE("SpiTestSample: spi set cfg fail, ret:%d!\n", ret);goto err;}/* 向SPI设备写入指定长度的数据 */ret = SpiWrite(spiHandle, wbuff, 4);if (ret != HDF_SUCCESS) {HDF_LOGE("SpiTestSample: spi write fail, ret:%d!\n", ret);goto err;}/* 从SPI设备读取指定长度的数据 */ret = SpiRead(spiHandle, rbuff, 4);if (ret != HDF_SUCCESS) {HDF_LOGE("SpiTestSample: spi read fail, ret:%d!\n", ret);goto err;}msg.wbuf = wbuff2;                      // 写入的数据msg.rbuf = rbuff;                       // 读取的数据msg.len = 4;                            // 读取写入数据的长度为4msg.keepCs = 0;                         // 当前传输完成后是否保持CS活动,1表述保持,0表示关闭CSmsg.delayUs = 0;                        // 进行下一次传输前不进行延时msg.speed = 115200;                     // 本次传输的速度// 进行一次自定义传输,传输的msg个数为1ret = SpiTransfer(spiHandle, &msg, 1);if (ret != HDF_SUCCESS) {HDF_LOGE("SpiTestSample: spi transfer fail, ret:%d!\n", ret);goto err;}HDF_LOGD("SpiTestSample: function tests end!");
err:// 销毁SPI设备句柄SpiClose(spiHandle);
}

最后

有很多小伙伴不知道学习哪些鸿蒙开发技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?而且学习时频繁踩坑,最终浪费大量时间。所以有一份实用的鸿蒙(HarmonyOS NEXT)资料用来跟着学习是非常有必要的。 

这份鸿蒙(HarmonyOS NEXT)资料包含了鸿蒙开发必掌握的核心知识要点,内容包含了ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、音频、视频、WebGL、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、Harmony南向开发、鸿蒙项目实战等等)鸿蒙(HarmonyOS NEXT)技术知识点。

希望这一份鸿蒙学习资料能够给大家带来帮助,有需要的小伙伴自行领取,限时开源,先到先得~无套路领取!!

获取这份完整版高清学习路线,请点击→纯血版全套鸿蒙HarmonyOS学习资料

鸿蒙(HarmonyOS NEXT)最新学习路线

  •  HarmonOS基础技能

  • HarmonOS就业必备技能 
  •  HarmonOS多媒体技术

  • 鸿蒙NaPi组件进阶

  • HarmonOS高级技能

  • 初识HarmonOS内核 
  • 实战就业级设备开发

有了路线图,怎么能没有学习资料呢,小编也准备了一份联合鸿蒙官方发布笔记整理收纳的一套系统性的鸿蒙(OpenHarmony )学习手册(共计1236页)鸿蒙(OpenHarmony )开发入门教学视频,内容包含:ArkTS、ArkUI、Web开发、应用模型、资源分类…等知识点。

获取以上完整版高清学习路线,请点击→纯血版全套鸿蒙HarmonyOS学习资料

《鸿蒙 (OpenHarmony)开发入门教学视频》

《鸿蒙生态应用开发V2.0白皮书》

图片

《鸿蒙 (OpenHarmony)开发基础到实战手册》

OpenHarmony北向、南向开发环境搭建

图片

 《鸿蒙开发基础》

  • ArkTS语言
  • 安装DevEco Studio
  • 运用你的第一个ArkTS应用
  • ArkUI声明式UI开发
  • .……

图片

 《鸿蒙开发进阶》

  • Stage模型入门
  • 网络管理
  • 数据管理
  • 电话服务
  • 分布式应用开发
  • 通知与窗口管理
  • 多媒体技术
  • 安全技能
  • 任务管理
  • WebGL
  • 国际化开发
  • 应用测试
  • DFX面向未来设计
  • 鸿蒙系统移植和裁剪定制
  • ……

图片

《鸿蒙进阶实战》

  • ArkTS实践
  • UIAbility应用
  • 网络案例
  • ……

图片

 获取以上完整鸿蒙HarmonyOS学习资料,请点击→纯血版全套鸿蒙HarmonyOS学习资料

总结

总的来说,华为鸿蒙不再兼容安卓,对中年程序员来说是一个挑战,也是一个机会。只有积极应对变化,不断学习和提升自己,他们才能在这个变革的时代中立于不败之地。 

这篇关于Harmony鸿蒙南向驱动开发-SPI接口使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/899228

相关文章

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来