中文分词,c++应用,想到jieba分词,结果还的自己封装。探索中

2024-04-13 02:12

本文主要是介绍中文分词,c++应用,想到jieba分词,结果还的自己封装。探索中,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、研究背景   

       随着互联网的快速发展,信息也呈了爆炸式的增长趋势。在海量的信息中,我们如何快速抽取出有效信息成为了必须要解决的问题。由于信息处理的重复性,而计算机又善于处理机械的、重复的、有规律可循的工作,因此自然就想到了利用计算机来帮助人们进行处理。在用计算机进行自然语言处理时,主要使用的还是基于统计的方法,并且实际的使用中取得了不错的效果。

       因为中文句子的特点——没有分隔符来分离句子中的词,所以在进行中文处理的时候,首先要做的就是如何对中文语句进行分词。这也是本次工程所要实现的功能。

       在这个工程中,实现的是一个分词系统。系统的主要的内容就是建立隐马尔科夫模型,用《人民日报语料库》进行训练得到模型参数,然后再用维特比算法求出最可能的隐含序列,最后将输入的句子分成一个个词的形式。

      

二、模型方法

       本工程主要使用的是隐马尔科夫模型和维特比算法。

       隐马尔科夫模型是一个统计模型,它可以用一个5元组来表示:{S,O,π,A,B}。下面对隐马尔科夫模型的五元组的学术含义和工程含义进行说明,通过对比直观的了解五元组在实际工程中的含义:

HMM五元素

学术含义

工程含义

S

隐含转态

词中4种状态:词头、词中、词尾、单字成词

O

观察状态

语料库中的全部汉字

π

初始状态概率矩阵

各种隐含状态的初始概率

A

隐含状态转移概率矩阵

4种隐含状态的转移概率

B

观察状态转移概率矩阵

每一个汉字到四种状态的概率

       在本工程中,为每个汉字设置了可能的四种状态:词头([/B]Begin)、词中([/M]Middle)、词尾([/E]End)和单字成词([/S]Single)。

       根据设置的状态,举个例子说明五个参数:

       假设输入的语句为:我是中国人

              S={/B、/M、/E、/S}

              O={迈、向、新、充、满、……}(语料库中的所有不重复汉字)

              π={P(我|B)、P(我|M)、P(我|E)、P(我|S)}

              A=

/B

/M

/E

/S

/B

0

0.3

0.7

0

/M

/E

/S

              B=

/B

0.3

/M

/E

0.6

/S

       上述涉及到的概率均可从语料库中根据统计得到。

三、系统设计

       本分词系统主要分为两个部分,一个部分是通过语料库训练出需要的文件。该部分只要执行一次即可。另一个部分是根据输入的语句,构建具体的模型参数(通过上面也可以看到,根据具体输入得到对应的概率),然后执行维特比算法求出最佳的隐含状态序列。根据隐含状态序列得到最终的分词结果。

       系统的开发语言是C++。C++在处理中文方面显得有点不方便——表示英文字符时用的是一个字节,表示中文时用的是两个字节(可以通过判断字符是否小于0来分出是ASCII字符还是中文字符)。但是最后还是通过一些技巧解决了C++处理中文的不便带来的问题。

       1、语料库处理

              (1)去掉原语料库中的词性

                     A、原始语料库如图所示:

                     B、处理后的语料库(在每行前面加了一个空格并去掉了词性)

                     C、处理流程图

              (2)统计每个状态中出现的字及其个数

                     A、设计的数据结构如下:

 struct node{string name;//保存单个字int quantity;//字出现的次数bool operator ==(const node & a){return name==a.name;}};struct Word{string name;//状态名long long num;//状态出现次数list<node> chinese;bool operator ==(const Word & a){return name==a.name;}bool findCh(string ch){node temp;temp.name=ch;temp.quantity=1;list<node >::iterator it;it=find(chinese.begin(),chinese.end(),temp);if(it==chinese.end()){chinese.push_back(temp);}else{it->quantity++;}return true;}};

                     B、处理步骤

                            a、从语料库读入一行字符串,再遍历字符串获得一个中文字

                            b、判断字的前后是否是空格,得到字对应的状态(S:前面是空格后面不是;M:前后都不是空格;E:前面不是空格后面是空格;S:前后都是空格)

                            c、根据字的状态,判断该字是否在该状态下出现过。是,对应字个数加1,否,插入新节点并且个数设置为1)

                            d、读到文件末尾结束

                     C、结束后得到如下的文件

              (3)统计状态间的转换,求得状态转移矩阵

                     A、统计出各个状态间转换在语料库中出现的次数及状态转换的总次数,计算出对应的概率

                     B、该步骤的输入语料库如下:

                           

                     C该过程结束后可以得到4*4的状态转移矩阵

       2、viterbi算法解码,求最佳隐含序列

              (1)维特比算法是一种动态规划算法。在本工程中,通过当前状态的前一个状态,计算出在前面状态出现的条件下出现当前状态的概率,并取最大值作为当前状态出现的概率。通过迭代可以计算出到最后一个字时,哪个状态出现的概率最大。最后通过回溯得到最佳的隐含状态序列。

              (2)算法伪代码如下:

四,系统演示与分析

       1、测试样例及结果

       2、结果分析

              (1)商品和服务->BESBE->商品/和/服务/

              (2)中国在比赛中取得了胜利->BESBESBESBE->中国/在/比赛/中/取得/了/胜利/

              (3)分词说明:根据维特比算法求得了隐含序列后,顺序输出,当该字是处于E状态或者S状态时,在该字后添加‘/’,输出后即可看到分词的效果。

              (4)由于每个字都有一个状态,所以在分词过程中,有可能会把原来是词的分开了,原来不是词的合成了词,造成错误的分词。比如上面的“明天”被拆开了,而“天会”被则被合成起来了。再比如,“和尚”和“尚未”都被分开了,即使词库中有这两个字。

       3、改进方案

              本工程仅仅依靠HMM实现,因此必然存在一定的缺陷。为了改进该系统,可以结合其他的分词方法,在HMM实现过程中或实现结束后再做进一步分析,以得到更好的分词效果。

五,参考资料

       1、http://www.tuicool.com/articles/FRZ77b 利用统计进行中文分词与词性分析

       2、基于N最短路径和隐马尔科夫模型的中文POI分词系统的研究 唐霄

       3、基于逆向隐马尔可夫模型的中文分词方法研究

       4、http://blog.csdn.net/sight_/article/details/43307581  隐马尔科夫模型详解

这篇关于中文分词,c++应用,想到jieba分词,结果还的自己封装。探索中的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898869

相关文章

MobaXterm远程登录工具功能与应用小结

《MobaXterm远程登录工具功能与应用小结》MobaXterm是一款功能强大的远程终端软件,主要支持SSH登录,拥有多种远程协议,实现跨平台访问,它包括多会话管理、本地命令行执行、图形化界面集成和... 目录1. 远程终端软件概述1.1 远程终端软件的定义与用途1.2 远程终端软件的关键特性2. 支持的

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

Java下载文件中文文件名乱码的解决方案(文件名包含很多%)

《Java下载文件中文文件名乱码的解决方案(文件名包含很多%)》Java下载文件时,文件名中文乱码问题通常是由于编码不正确导致的,使用`URLEncoder.encode(filepath,UTF-8... 目录Java下载文件中文文件名乱码问题一般情况下,大家都是这样为了解决这个问题最终解决总结Java下

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.