本文主要是介绍基于 OpenHarmony 音符检测实现原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、音符检测的基本原理
本文基于 OpenHarmony 开源系统提供了一种音符检测的原理方法,结合多首音乐,运用了 python 和 C++ 两种编程环境实现了预期的检出效果。旨在为振动马达(vibrator)提供音乐节奏感的触觉效果,代码所在目录 .\base\sensors\sensor\vibration_convert。
先从 python 实现说起,Librosa 关于音符检测主要用到了两个函数,一个是 onset_strength(),负责生成包含音符产生的频率突变的包络线,如蓝色线条所示。另一个是 onset_detect(),主要运用峰点检测找到每个音符的位置,如黄色线条所示。
图 1 音符检测包络图
包含有用的频率突变的包络线是音符检测的核心所在。傅里叶变换能够得到全部信号采样的频谱图,即每个频率的能量贡献,如图 2 所示。但是每个时刻频谱图却得不到,于是将全部采样分割成若干固定长度的窗口,每个窗口应用傅里叶变化,从而得到这一窗口的频率分布,水平轴为时间,纵轴为频率,颜色代表能量大小如图 3 所示。
图 2 整体频率分布图
图 3 时频图
每种乐器在音符产生时,前后时间片段的频率将会发生明显变化,如图 4 所示。于是将时频图相邻列做差分,将明显看到变化的频率。为了便于分析,只取正值,具有相同的效果,所以负值填零。一个时刻变化的频率有多个,如何取舍,有三种方法,平均数、中位数和联合,目前常用到的是中位数和平均数。至此,将得到任意时刻发生明显频率变化的单一能量,如图 1 蓝色线条所示。
图 4 时频图相邻列差分前后变化
二、音符检测的准确性
目前采用频谱光通量(相邻列差分)方法检测是业界公认且较为准确的方法,音符检出率仅为 70% 多。不准确的原因可能有乐器多且差异较大,信号衰减对性能的影响,颤音影响,峰点检测时不同参数的影响,这些主要是针对音乐的研究。
三、音符检测的程序流程
3.1 程序实现
音符检测功能核心就是频谱图和梅尔滤波器,频谱图的核心就是短时傅里叶变换,C++ 代码片段如下,
void STFT::stft(short*in,int length,double**out){int i,j;/*** Shfit & Copy***/for (j = 0; j < channels; j++) {for (i = 0; i < ol; i++) {buf[j][i] = buf[j][i + shift_size];}}// EOFif(length!=shift_size*channels){length = length/channels;for (i = 0; i < length; i++) {for (j = 0; j < channels; j++)buf[j][i + ol]= (double)(in[i * channels+ j]);}for (i = length; i < shift_size; i++) {for (j = 0; j < channels; j++)buf[j][i + ol] = 0;}//continue}else{for (i = 0; i < shift_size; i++) {for (j = 0; j < channels; j++){buf[j][i + ol] = (double)(in[i * channels+ j]);}}}/*** Copy input -> hann_input buffer ***/for (i = 0; i < channels; i++)memcpy(out[i], buf[i], sizeof(double) * frame_size);// scaling for precisionif(opt_scale)for (i = 0; i < channels; i++)for (j = 0; j < frame_size; j++)out[i][j] /= MATLAB_scale;/*** Window ***/hw->Process(out, channels);/*** FFT ***/fft->FFT(out);
}
Mel 滤波器构造代码如下:
if fmax is None:fmax = float(sr) / 2# Initialize the weightsn_mels = int(n_mels)weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)# Center freqs of each FFT binfftfreqs = fft_frequencies(sr=sr, n_fft=n_fft)# 'Center freqs' of mel bands - uniformly spaced between limitsmel_f = mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax, htk=htk)fdiff = np.diff(mel_f)ramps = np.subtract.outer(mel_f, fftfreqs)for i in range(n_mels):# lower and upper slopes for all binslower = -ramps[i] / fdiff[i]upper = ramps[i + 2] / fdiff[i + 1]# .. then intersect them with each other and zeroweights[i] = np.maximum(0, np.minimum(lower, upper))if norm == "slaney":# Slaney-style mel is scaled to be approx constant energy per channelenorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])weights *= enorm[:, np.newaxis]else:weights = util.normalize(weights, norm=norm, axis=-1)# Only check weights if f_mel[0] is positiveif not np.all((mel_f[:-2] == 0) | (weights.max(axis=1) > 0)):# This means we have an empty channel somewherewarnings.warn("Empty filters detected in mel frequency basis. ""Some channels will produce empty responses. ""Try increasing your sampling rate (and fmax) or ""reducing n_mels.",stacklevel=2,)
return weights
3.2 功能流程图
为了能让大家更好的学习鸿蒙(HarmonyOS NEXT)开发技术,这边特意整理了《鸿蒙开发学习手册》(共计890页),希望对大家有所帮助:https://qr21.cn/FV7h05
《鸿蒙开发学习手册》:
如何快速入门:https://qr21.cn/FV7h05
- 基本概念
- 构建第一个ArkTS应用
- ……
开发基础知识:https://qr21.cn/FV7h05
- 应用基础知识
- 配置文件
- 应用数据管理
- 应用安全管理
- 应用隐私保护
- 三方应用调用管控机制
- 资源分类与访问
- 学习ArkTS语言
- ……
基于ArkTS 开发:https://qr21.cn/FV7h05
- Ability开发
- UI开发
- 公共事件与通知
- 窗口管理
- 媒体
- 安全
- 网络与链接
- 电话服务
- 数据管理
- 后台任务(Background Task)管理
- 设备管理
- 设备使用信息统计
- DFX
- 国际化开发
- 折叠屏系列
- ……
鸿蒙开发面试真题(含参考答案):https://qr18.cn/F781PH
鸿蒙开发面试大盘集篇(共计319页):https://qr18.cn/F781PH
1.项目开发必备面试题
2.性能优化方向
3.架构方向
4.鸿蒙开发系统底层方向
5.鸿蒙音视频开发方向
6.鸿蒙车载开发方向
7.鸿蒙南向开发方向
这篇关于基于 OpenHarmony 音符检测实现原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!