原始套接字(SOCK_RAW)概述[转载]

2024-04-12 03:18

本文主要是介绍原始套接字(SOCK_RAW)概述[转载],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大多数程序员所接触到的套接字(Socket)为两类:

  (1)流式套接字(SOCK_STREAM):一种面向连接的Socket,针对于面向连接的TCP服务应用;

  (2)数据报式套接字(SOCK_DGRAM):一种无连接的Socket,对应于无连接的UDP服务应用。

  从用户的角度来看,SOCK_STREAM、SOCK_DGRAM这两类套接字似乎的确涵盖了TCP/IP应用的全部,因为基于TCP/IP的应用,从协议栈的层次上讲,在传输层的确只可能建立于TCP或UDP协议之上(图1),而SOCK_STREAM、SOCK_DGRAM又分别对应于TCP和UDP,所以几乎所有的应用都可以用这两类套接字实现。


图1 TCP/IP协议栈


  但是,当我们面对如下问题时,SOCK_STREAM、SOCK_DGRAM将显得这样无助:

  (1) 怎样发送一个自定义的IP包?

  (2) 怎样发送一个ICMP协议包?

  (3) 怎样使本机进入杂糅模式,从而能够进行网络sniffer?

  (4) 怎样分析所有经过网络的包,而不管这样包是否是发给自己的?

  (5) 怎样伪装本地的IP地址?

  这使得我们必须面对另外一个深刻的主题――原始套接字(Raw Socket)。Raw Socket广泛应用于高级网络编程,也是一种广泛的黑客手段。著名的网络sniffer、拒绝服务攻击(DOS)、IP欺骗等都可以以Raw Socket实现。

  Raw Socket与标准套接字(SOCK_STREAM、SOCK_DGRAM)的区别在于前者直接置"根"于操作系统网络核心(Network Core),而SOCK_STREAM、SOCK_DGRAM则"悬浮"于TCP和UDP协议的外围,如图2所示:


图2 Raw Socket与标准Socket


  当我们使用Raw Socket的时候,可以完全自定义IP包,一切形式的包都可以"制造"出来。因此,本文事先必须对TCP/IP所涉及IP包结构进行必要的交待。

  目前,IPv4的报头结构为:

版本号(4)包头长(4)服务类型(8)
数据包长度(16)
标识(16)
偏移量(16)
生存时间(8)
传输协议(8)
校验和(16)
源地址(32)
 
目的地址(32)
 
选项(8)
.........
填充


  对其进行数据结构封装:

typedef struct _iphdr //定义IP报头 

 unsigned char h_lenver; //4位首部长度+4位IP版本号 
 unsigned char tos; //8位服务类型TOS 
 unsigned short total_len; //16位总长度(字节) 
 unsigned short ident; //16位标识 
 unsigned short frag_and_flags; //3位标志位 
 unsigned char ttl; //8位生存时间 TTL 
 unsigned char proto; //8位协议 (TCP, UDP 或其他) 
 unsigned short checksum; //16位IP首部校验和 
 unsigned int sourceIP; //32位源IP地址 
 unsigned int destIP; //32位目的IP地址 
} IP_HEADER;


  或者将上述定义中的第一字节按位拆分:

typedef struct _iphdr //定义IP报头 

 unsigned char h_len : 4; //4位首部长度
 unsigned char ver : 4; //4位IP版本号 
 unsigned char tos; 
 unsigned short total_len; 
 unsigned short ident; 
 unsigned short frag_and_flags; 
 unsigned char ttl; 
 unsigned char proto; 
 unsigned short checksum; 
 unsigned int sourceIP; 
 unsigned int destIP; 
} IP_HEADER;


  更加严格地讲,上述定义中h_len、ver字段的内存存放顺序还与具体CPU的Endian有关,因此,更加严格的IP_HEADER可定义为:

typedef struct _iphdr //定义IP报头 

 #if defined(__LITTLE_ENDIAN_BITFIELD)
  unsigned char h_len : 4; //4位首部长度
  unsigned char ver : 4; //4位IP版本号 
 #elif defined (__BIG_ENDIAN_BITFIELD)
  unsigned char ver : 4; //4位IP版本号 
  unsigned char h_len : 4; //4位首部长度
 #endif
 unsigned char tos; 
 unsigned short total_len; 
 unsigned short ident; 
 unsigned short frag_and_flags; 
 unsigned char ttl; 
 unsigned char proto; 
 unsigned short checksum; 
 unsigned int sourceIP; 
 unsigned int destIP; 
} IP_HEADER;


  TCP报头结构为:

源端口(16)
目的端口(16)
序列号(32)
确认号(32)
TCP偏移量(4)
保留(6)
标志(6)
窗口(16)
校验和(16)
紧急(16)
选项(0或32)
数据(可变)


  对应数据结构:

typedef struct psd_hdr //定义TCP伪报头 

 unsigned long saddr; //源地址 
 unsigned long daddr; //目的地址 
 char mbz; 
 char ptcl; //协议类型 
 unsigned short tcpl; //TCP长度 
}PSD_HEADER; 
typedef struct _tcphdr //定义TCP报头 

 unsigned short th_sport; //16位源端口 
 unsigned short th_dport; //16位目的端口 
 unsigned int th_seq; //32位序列号 
 unsigned int th_ack; //32位确认号 
 unsigned char th_lenres; //4位首部长度/4位保留字 
 unsigned char th_flag; //6位标志位 
 unsigned short th_win; //16位窗口大小 
 unsigned short th_sum; //16位校验和 
 unsigned short th_urp; //16位紧急数据偏移量 
} TCP_HEADER;


  同样地,TCP头的定义也可以将位域拆分:

typedef struct _tcphdr
{
 unsigned short th_sport; 
 unsigned short th_dport; 
 unsigned int th_seq; 
 unsigned int th_ack; 
 /*little-endian*/
 unsigned short tcp_res1: 4, tcp_hlen: 4, tcp_fin: 1, tcp_syn: 1, tcp_rst: 1, tcp_psh: 1, tcp_ack: 1, tcp_urg: 1, tcp_res2: 2;
 unsigned short th_win; 
 unsigned short th_sum; 
 unsigned short th_urp; 
} TCP_HEADER;


  UDP报头为:

源端口(16)
目的端口(16)
报文长(16)
校验和(16)


  对应的数据结构为:

typedef struct _udphdr //定义UDP报头 
{
 unsigned short uh_sport;//16位源端口
 unsigned short uh_dport;//16位目的端口
 unsigned short uh_len;//16位长度
 unsigned short uh_sum;//16位校验和
} UDP_HEADER;


  ICMP协议是网络层中一个非常重要的协议,其全称为Internet Control Message Protocol(因特网控制报文协议),ICMP协议弥补了IP的缺限,它使用IP协议进行信息传递,向数据包中的源端节点提供发生在网络层的错误信息反馈。ICMP报头为:

类型(8)
代码(8)
校验和(16)
消息内容


  常用的回送与或回送响应ICMP消息对应数据结构为:

typedef struct _icmphdr //定义ICMP报头(回送与或回送响应)

 unsigned char i_type;//8位类型
 unsigned char i_code; //8位代码 
 unsigned short i_cksum; //16位校验和 
 unsigned short i_id; //识别号(一般用进程号作为识别号) 
 unsigned short i_seq; //报文序列号 
 unsigned int timestamp;//时间戳 
} ICMP_HEADER;


  常用的ICMP报文包括ECHO-REQUEST(响应请求消息)、ECHO-REPLY(响应应答消息)、Destination Unreachable(目标不可到达消息)、Time Exceeded(超时消息)、Parameter Problems(参数错误消息)、Source Quenchs(源抑制消息)、Redirects(重定向消息)、Timestamps(时间戳消息)、Timestamp Replies(时间戳响应消息)、Address Masks(地址掩码请求消息)、Address Mask Replies(地址掩码响应消息)等,是Internet上十分重要的消息。后面章节中所涉及到的ping命令、ICMP拒绝服务攻击、路由欺骗都与ICMP协议息息相关。

  另外,本系列文章中的部分源代码参考了一些优秀程序员的开源项目,由于篇幅的关系我们不能一一列举,在此一并表示感谢。


http://cailin.iteye.com/blog/1985169

这篇关于原始套接字(SOCK_RAW)概述[转载]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895959

相关文章

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

Java 多线程概述

多线程技术概述   1.线程与进程 进程:内存中运行的应用程序,每个进程都拥有一个独立的内存空间。线程:是进程中的一个执行路径,共享一个内存空间,线程之间可以自由切换、并发执行,一个进程最少有一个线程,线程实际数是在进程基础之上的进一步划分,一个进程启动之后,进程之中的若干执行路径又可以划分成若干个线程 2.线程的调度 分时调度:所有线程轮流使用CPU的使用权,平均分配时间抢占式调度

java集合的概述

集合就是一个容器,我们可以把多个对象放入的容器中。就像水杯(假设容量可以不断扩大)一样,你可以往水杯中不断地添加水,既然是水杯,你就不能往里添加沙子,也就是说集合中添加的对象必须是同一个类型的(引用类型,而不能是基本类型)。 看到集合的介绍会让我们的想起数组,那么集合和数组有什么区别呢? 首先,数组的大小是固定的,而集合理论上大小是不限的。 其次,数组既可以存储基本数据类型的数据,也可以存储

【CSS in Depth 2 精译_023】第四章概述 + 4.1 Flexbox 布局的基本原理

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一章 层叠、优先级与继承(已完结) 1.1 层叠1.2 继承1.3 特殊值1.4 简写属性1.5 CSS 渐进式增强技术1.6 本章小结 第二章 相对单位(已完结) 2.1 相对单位的威力2.2 em 与 rem2.3 告别像素思维2.4 视口的相对单位2.5 无单位的数值与行高2.6 自定义属性2.7 本章小结 第三章 文档流与盒模型(已

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通

提问的智慧(转载)

此文让我受益良多。值得一读,大家如果也觉得不错就一起来推~~~   ---------------------------------      在黑客世界里,当提出一个技术问题时,你能得到怎样的回答?这取决于挖出答案的难度,同样取决于你提问的方法。本指南旨在帮助你提高发问技巧,以获取你最想要的答案。       首先你必须明白,黑客们只偏爱艰巨的任务,或者能激发他们

Unity Adressables 使用说明(一)概述

使用 Adressables 组织管理 Asset Addressables 包基于 Unity 的 AssetBundles 系统,并提供了一个用户界面来管理您的 AssetBundles。当您使一个资源可寻址(Addressable)时,您可以使用该资源的地址从任何地方加载它。无论资源是在本地应用程序中可用还是存储在远程内容分发网络上,Addressable 系统都会定位并返回该资源。 您

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探