Langchain-Chatchat 从入门到精通(基于本地知识库的问答系统)(更新中)

本文主要是介绍Langchain-Chatchat 从入门到精通(基于本地知识库的问答系统)(更新中),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 一、Langchain-Chatchat介绍
    • 1-1、Langchain-Chatchat介绍
    • 1-2、LangChain+ChatGLM 工作流
    • 1-3、文档角度的工作流
  • 二、快速上手
    • 2-0、硬件要求
    • 2-1、环境配置
    • 2-2、模型下载
    • 2-3、初始化知识库和配置文件
    • 2-4、一键启动
  • 三、配置文件详解(config目录下)
    • 3-1、basic_config
    • 3-2、kb_config
    • 3-3、model_config
    • 3-4、prompt_config
    • 3-5、server_config
  • 四、其他问题
    • 4-1、如何开启量化模式?
    • 4-2、加载其他模型?
    • 4-3、加载BaiChuan模型报错AttributeError: 'BaichuanTokenizer' object has no attribute 'sp_model'
    • 4-4、加载通义千问模型报错KeyError: 'qwen2'
  • 总结


前言

一种利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。(本文侧重于整个项目的理解和内容调节,如部署遇到问题请看结尾的其他参考文章)

一、Langchain-Chatchat介绍

1-1、Langchain-Chatchat介绍

在这里插入图片描述
Langchain-Chatchat 项目地址: https://github.com/chatchat-space/Langchain-Chatchat

一种利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。

依托于本项目支持的开源 LLM 与 Embedding 模型,本项目可实现全部使用开源模型离线私有部署。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入。

本项目实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的 top k个 -> 匹配出的文本作为上下文和问题一起添加到 prompt中 -> 提交给 LLM生成回答。

1-2、LangChain+ChatGLM 工作流

项目实现原理如下:

  • 加载文件
  • 读取文本
  • 文本分割
  • 文本向量化
  • 问句向量化
  • 在文本向量中匹配出与问句向量最相似的top k个
  • 匹配出的文本作为上下文和问题一起添加到Prompt中去
  • 提交给LLM生成回答
    在这里插入图片描述

1-3、文档角度的工作流

在这里插入图片描述

二、快速上手

Notice: 强烈建议直接使用镜像!!!个人去搭建环境真的会遇到亿点点问题😍

2-0、硬件要求

如果想要顺利在GPU运行本地模型的 FP16 版本,你至少需要以下的硬件配置,来保证在我们框架下能够实现 稳定连续对话

ChatGLM3-6B & LLaMA-7B-Chat 等 7B模型

  • 最低显存要求: 14GB
  • 推荐显卡: RTX 4080

Qwen-14B-Chat 等 14B模型

  • 最低显存要求: 30GB
  • 推荐显卡: V100

Yi-34B-Chat 等 34B模型

  • 最低显存要求: 69GB
  • 推荐显卡: A100

Qwen-72B-Chat 等 72B模型

  • 最低显存要求: 145GB
  • 推荐显卡:多卡 A100 以上

注意: 以上显存占用仅供参考,实际占用请以nvidia-smi为准

2-1、环境配置

# 拉取仓库
$ git clone https://github.com/chatchat-space/Langchain-Chatchat.git# 进入目录
$ cd Langchain-Chatchat# 安装全部依赖
$ pip install -r requirements.txt 
$ pip install -r requirements_api.txt
$ pip install -r requirements_webui.txt  # 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。

2-2、模型下载

下载模型要先安装lfs:https://docs.github.com/zh/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
备注: 下载模型可能会因为网络问题无法下载,可以考虑不翻墙的方法,在魔搭社区下载!https://modelscope.cn/models

$ git lfs install
$ git clone https://huggingface.co/THUDM/chatglm3-6b
$ git clone https://huggingface.co/BAAI/bge-large-zh

2-3、初始化知识库和配置文件

$ python copy_config_example.py
$ python init_database.py --recreate-vs

更新知识库表

python init_database.py --create-tables

2-4、一键启动

$ python startup.py -a

启动后的界面如下:
在这里插入图片描述

其他

# api服务启动,访问0.0.0.0:7861/docs
python server/api.py# Web UI服务启动,访问http://localhost:8501/
streamlit run webui.py

三、配置文件详解(config目录下)

3-1、basic_config

basic_config介绍: 基础配置文件,记录日志格式、日志存储路径以及临时文件目录。一般无需修改。

代码界面截图如下所示
在这里插入图片描述

3-2、kb_config

kb_config介绍: 向量数据库配置、分词器配置、知识库配置等。

代码界面截图如下所示:
在这里插入图片描述

3-3、model_config

model_config介绍: 模型配置项,包括选用的Embedding、要运行的LLM、在线LLM的api、key的配置。

代码界面截图如下所示:

在这里插入图片描述
支持的联网模型:

  • 智谱AI
  • 阿里云通义千问
  • 百川
  • ChatGPT
  • Gimini
  • Azure OpenAI
  • MiniMax
  • 讯飞星火
  • 百度千帆
  • 字节火山方舟

目前支持的本地向量数据库列表如下:

  • FAISS
  • Milvus
  • PGVector
  • Chroma

默认配置如下:

  • LLM: Chatglm3-6b
  • Embedding Models: m3e-base
  • TextSplitter: ChineseRecursiveTextSplitter
  • Kb_dataset: faiss

3-4、prompt_config

prompt_config介绍: 提示词配置,包括基础的大模型对话提示词、知识库的对话提示词、搜索引擎的对话提示词、与Agent对话的提示词。

  • llm_chat: 最基本的对话提示词。
  • knowledge_base_chat: 与知识库对话的提示词。
  • agent_chat: 与Agent对话的提示词。

Notice: prompt模板使用Jinja2语法,简单点就是用双大括号代替f-string的单大括号 请注意,本配置文件支持热加载,修改prompt模板后无需重启服务。

代码界面截图如下所示:
在这里插入图片描述

3-5、server_config

server_config介绍: 服务器和端口的配置项,如果需要修改端口号的话可以在这里进行修改。

Notice: 在启动startup.py时,可用通过–model-worker --model-name xxxx指定模型,不指定则为LLM_MODEL

代码界面截图如下所示:

在这里插入图片描述

四、其他问题

4-1、如何开启量化模式?

在配置文件server_config文件里有Load_8bit参数,改为True即可:

在这里插入图片描述

4-2、加载其他模型?

  • 在model_config文件夹里我们可以看到该框架支持的模型:

在这里插入图片描述

  • 首先我们需要在model_config里修改模型以及Embedding的根目录,将下载好的模型放于该根目录下,并且模型文件夹名称要与上边的模型名称一致。例如:mv Qwen1___5-14B/ Qwen1.5-14B-Chat

在这里插入图片描述

  • 若需要使用在线模型,只需把申请好的API_KEY等填入即可。

在这里插入图片描述

  • 模型下载请去结尾参考文章魔搭社区官网下载。

4-3、加载BaiChuan模型报错AttributeError: ‘BaichuanTokenizer’ object has no attribute ‘sp_model’

解决方法: 由于版本冲突导致,需要更改以下包的版本

pip install transformers==4.33.3
pip install torch==2.0.1
pip install triton==2.0.0

4-4、加载通义千问模型报错KeyError: ‘qwen2’

解决方法: 由于版本冲突导致,需要更改以下包的版本

# 大于这个版本也是ok的
pip install --upgrade transformers==4.37.2

(腹语): 这个transformers版本是没法加载BaiChuan的,所以你只能二选一!

参考文章:

Langchain官方GitHub
Langchain-Chatchat 官方Github
Langchain-Chatchat 官方Github----疑难问题解答
魔搭社区官网
【大模型实践】使用 Langchain-Chatchat 进行本地部署的完整指南).
Langchain-Chatchat + 阿里通义千问Qwen 保姆级教程 | 次世代知识管理解决方案
Langchain-Chatchat大语言模型本地知识库的踩坑、部署、使用
【大模型实践】使用 Langchain-Chatchat 进行本地部署的完整指南
LLMs之RAG:LangChain-Chatchat(一款中文友好的全流程本地知识库问答应用)的简介(支持 FastChat 接入的ChatGLM-2/LLaMA-2等多款主流LLMs+多款embe
Langchain-Chatchat开源库使用的随笔记(一)

总结

确认过眼神,我遇上对的人💕💕💕

这篇关于Langchain-Chatchat 从入门到精通(基于本地知识库的问答系统)(更新中)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895884

相关文章

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Maven如何手动安装依赖到本地仓库

《Maven如何手动安装依赖到本地仓库》:本文主要介绍Maven如何手动安装依赖到本地仓库问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载依赖二、安装 JAR 文件到本地仓库三、验证安装四、在项目中使用该依赖1、注意事项2、额外提示总结一、下载依赖登

Android实现打开本地pdf文件的两种方式

《Android实现打开本地pdf文件的两种方式》在现代应用中,PDF格式因其跨平台、稳定性好、展示内容一致等特点,在Android平台上,如何高效地打开本地PDF文件,不仅关系到用户体验,也直接影响... 目录一、项目概述二、相关知识2.1 PDF文件基本概述2.2 android 文件访问与存储权限2.

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1