历届试题 小数第n位--快速幂算法

2024-04-11 15:32

本文主要是介绍历届试题 小数第n位--快速幂算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:

我们知道,整数做除法时,有时得到有限小数,有时得到无限循环小数。
  如果我们把有限小数的末尾加上无限多个0,它们就有了统一的形式。
  本题的任务是:在上面的约定下,求整数除法小数点后的第n位开始的3位数。

输入格式

  一行三个整数:a b n,用空格分开。a是被除数,b是除数,n是所求的小数后位置(0<a,b,n<1000000000)

输出格式

  一行3位数字,表示:a除以b,小数后第n位开始的3位数字。

样例输入

1 8 1

样例输出

125

样例输入

1 8 3

样例输出

500

样例输入

282866 999000 6

样例输出

914

思路:

由于数据的范围很大,如果按照一般的算法进行计算,那么一定会超时;

也不能够用double s=a/b*10^(n+2),数据太大,double的精确度不够,所以我们要找到一个合适的算法进行求解;

最合适的算法就是快速幂算法--反复平方;

快速幂算法--反复平方:

A:

当 X^n=((X^2)^2)......;

如果把n表示为2的幂次的和:n=2^k1+2^k2+2^k3+.....;

那么X^n=(x^2^k1)(x^2^k2)(x^2^k3).......;

时间复杂度就是O(logn);

例如:

x^22=x^16*x^4*x^2;      (22转换成二进制是10110);

ll qq(ll n,ll k)
{ll ret=1;while(k){if(k&1)//如果二进制最低位为1,则乘上n^(2^i);ret=((ret%mod)*(n%mod))%mod;n=(n%mod)*(n%mod);//将n平方;k>>=1;//右移一位,相当于除2;}return ret%mod;
}

B:

也可以用另外一种思路来理解;

当n为偶数的时候有X^n=((x^2)^(n/2)),递归转为n/2的情况;

当n为奇数时有X^n=((x^2)^(n/2))*x;同样也递归转为n/2的情况。

这样递归下去,每次n都减半,于是可以在O(logn)时间内完成幂运算;

ll qq(ll n,ll k)
{if(k==0)return 1;ll ret=qq(n*n%mod,k/2);if(k&1)ret=ret*n%mod;return ret%mod;
}

代码如下:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;ll a,b,n,mod;ll qq(ll n,ll k)
{ll ret=1;while(k){if(k&1)//如果二进制最低位为1,则乘上n^(2^i);ret=((ret%mod)*(n%mod))%mod;n=(n%mod)*(n%mod);//将n平方;k>>=1;//右移一位,相当于除2;}return ret%mod;
}/*ll qq(ll n,ll k)
{if(k==0)return 1;ll ret=qq(n*n%mod,k/2);if(k&1)ret=ret*n%mod;return ret%mod;
}*/int main()
{while(~scanf("%lld%lld%lld",&a,&b,&n)){mod=b*1000;ll sum=(a%mod*qq(10,n+2))%mod;ll s=sum/b;printf("%lld\n",s);}return 0;
}

 

 

 

这篇关于历届试题 小数第n位--快速幂算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/894466

相关文章

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技