torch.mean()的使用方法

2024-04-11 06:36
文章标签 使用 方法 torch mean

本文主要是介绍torch.mean()的使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对一个三维数组的每一维度进行操作

1,dim=0

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 0) 
print(mean, mean.shape)

输出结果:

tensor([[[0., 1.],

             [2., 3.]],

             [[4., 5.],

              [6., 7.]]])

tensor([[2., 3.],

            [4., 5.]]) torch.Size([2, 2])

2,dim=1

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 1) 
print(mean, mean.shape)

输出结果

tensor(

[[[0., 1.],

[2., 3.]],

[[4., 5.],

[6., 7.]]])

tensor(

[[1., 2.],

[5., 6.]]) torch.Size([2, 2])

3,dim=2

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 2) 
print(mean, mean.shape)

输出结果

tensor(

[[[0., 1.],

[2., 3.]],

[[4., 5.],

[6., 7.]]])

tensor(

[[0.5000, 2.5000],

[4.5000, 6.5000]]) torch.Size([2, 2])

补充,如果在函数中添加了True,表示要和原来数的维度一致,不够的用维度1来添加,如下


a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 2, True) 
print(mean, mean.shape)
tensor([[[0., 1.],[2., 3.]],[[4., 5.],[6., 7.]]])
tensor([[[0.5000],[2.5000]],[[4.5000],[6.5000]]]) torch.Size([2, 2, 1])

补充多维度变化


a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 0, True) 
print(mean, mean.shape)
tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 4.,  5.],[ 6.,  7.]],[[ 8.,  9.],[10., 11.]]]]) torch.Size([1, 2, 2, 2])

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 1, True) 
print(mean, mean.shape)
tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 2.,  3.],[ 4.,  5.]]],[[[10., 11.],[12., 13.]]]]) torch.Size([2, 1, 2, 2])
a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 2, True) 
print(mean, mean.shape)tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 1.,  2.]],[[ 5.,  6.]]],[[[ 9., 10.]],[[13., 14.]]]]) torch.Size([2, 2, 1, 2])

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 3, True) 
print(mean, mean.shape)
tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 0.5000],[ 2.5000]],[[ 4.5000],[ 6.5000]]],[[[ 8.5000],[10.5000]],[[12.5000],[14.5000]]]]) torch.Size([2, 2, 2, 1])

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15,0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2,2) 
print(a) 
mean = torch.mean(a, 3, True) 
print(mean, mean.shape)
tensor([[[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]],[[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]]])
tensor([[[[[ 1.,  2.]],[[ 5.,  6.]]],[[[ 9., 10.]],[[13., 14.]]]],[[[[ 1.,  2.]],[[ 5.,  6.]]],[[[ 9., 10.]],[[13., 14.]]]]]) torch.Size([2, 2, 2, 1, 2])

这篇关于torch.mean()的使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893324

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu