Day1 省选衔接题 思路总结

2024-04-11 00:52
文章标签 总结 day1 思路 衔接 省选

本文主要是介绍Day1 省选衔接题 思路总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Day1 省选题 思路


取数

题面1
可反悔的贪心。我们开一个双向链表记录此时每个数的前/后一个数是什么。一个简单但不一定正确的贪心策略即为:每次都取走当前值最大的且可取的数,并更新列表。考虑如何使这个贪心思路正确。

p r e x pre_x prex 表示 x x x 的前一个元素, n x t x nxt_x nxtx 表示 x x x 的后一个元素, w ( x ) w(x) w(x) 表示 x x x 的值。则在取走 x x x 后,显然 p r e x , n x t x pre_x,nxt_x prex,nxtx 在这之后都不能被选取。**但如果发现选择 p r e x , n x t x pre_x,nxt_x prex,nxtx 会比只选 x x x 更优呢?**考虑这个贪心每轮都至少新挑出一个元素出来,那么在选择 x x x 后放弃 x x x 选择了 p r e x , n x t x pre_x,nxt_x prex,nxtx,可以理解是将 x x x 替换为后两者中的一个(反悔操作),并新选出了后两者中的另一个。而将 x x x 替换为 p r e x , n x t x pre_x,nxt_x prex,nxtx 的收益为 w ( p r e x ) + w ( n x t t ) − w ( x ) w(pre_x)+w(nxt_t)-w(x) w(prex)+w(nxtt)w(x),所以我们就可以将这个值也当作一个可选的点,继续进行贪心。

细节部分,在选择了 x x x 后,可以将链表中的 x x x 直接替换为 p r e x , n x t x pre_x,nxt_x prex,nxtx 两点综合起来。具体地,在计算完 x x x 的贡献后,标记 n x t x , p r e x nxt_x,pre_x nxtx,prex 这两个单独的点分别标记为已选,然后就可以更新 w ( x ) ← w ( p r e x ) + w ( n x t t ) − w ( x ) w(x)\gets w(pre_x)+w(nxt_t)-w(x) w(x)w(prex)+w(nxtt)w(x)。因为 n x t x , p r e x nxt_x,pre_x nxtx,prex 都不能再单独被选,所以按照正常的链表删除操作删除 p r e x , n x t x pre_x,nxt_x prex,nxtx 两个单独的点。

取数2

在这里插入图片描述
题意即为:从 n n n 个集合中各选出一个数求和,求出前 k k k 大的和。为了顺应大家的习惯,这里将 n , k n,k n,k 的意义调换了。

显然最大的取法就是从每个集合中取一个最大值求和,我们设这个最优值为 a n s ans ans。考虑其可能的后几个略小一些的状态。我们将每个集合按照最大值减次大值的差从小到大排序,每个集合内部按从大到小排序。假设当前状态 { i , j , w } \{i,j,w\} {i,j,w} 表示枚举到第 i i i 个集合中的第 j j j 个数,考虑将 a n s ans ans 中第 i i i 个集合取的数更换为 j j j更换后的答案为 w w w。令 c ( i , j ) c(i,j) c(i,j) 表示集合 i i i 中第 j j j 大的值,最初始的状态即为 { 1 , 2 , a n s − c ( 1 , 1 ) + c ( 1 , 2 ) } \{1,2,ans-c(1,1)+c(1,2)\} {1,2,ansc(1,1)+c(1,2)}。对于每个状态会有三个可能的分支:

  • 如果 j < s i z i j<siz_i j<sizi,则一种可能的选择即为放弃更换为 j j j,考虑更换为 j + 1 j+1 j+1。新的状态为 { i , j + 1 , w − c ( i , j ) + c ( i + j ) } \{i,j+1,w-c(i,j)+c(i+j)\} {i,j+1,wc(i,j)+c(i+j)}
  • 如果 i i i 不是最后一个集合:
    • 一种可能的选择即为决定更换为 j j j,开始考虑 i + 1 i+1 i+1 集合的选择。新的状态为 { i + 1 , 2 , w − c ( i + 1 , 1 ) + c ( i + 1 , 2 ) } \{i+1,2,w-c(i+1,1)+c(i+1,2)\} {i+1,2,wc(i+1,1)+c(i+1,2)}
    • 另外,如果 j = 2 j=2 j=2,则一种可能的选择即为放弃更换 i i i 中的元素,直接考虑 i + 1 i+1 i+1 集合的选择。新的状态为 { i + 1 , 2 , w − c ( i , 2 ) + c ( i , 1 ) − c ( i + 1 , 1 ) + c ( i + 1 , 2 ) } \{i + 1,2,w - c(i,2) + c(i,1) - c(i+1,1) + c(i+1,2)\} {i+1,2,wc(i,2)+c(i,1)c(i+1,1)+c(i+1,2)}

开一个优先队列记录这些状态,从中取 k k k​ 轮即为答案。

文件列表

在这里插入图片描述在这里插入图片描述
可以说是 C++ 语法题

直接按照题意模拟即可,注意文件(夹)名可能会重复。

巧置挡板

在这里插入图片描述在这里插入图片描述

暴搜+剪枝。由于最终每一个矩形中都有且仅有一个 1 1 1,我们不妨在搜索的过程中,每次枚举所有包含某一个 1 1 1 的矩形。状态可以这样设计,我们用一个长度为 n n n 的序列来表示一条从右上到左下的单调分界线(序列中每一个元素表示该行分界线的位置),分界线左边为搜索过的区域,右边为未搜索的区域。这个状态的答案将表示完成右侧区域最少的边数。

为什么是单调的分界线?在任意一种分隔方案中,都一定存在一种矩形放置顺序,使得每次放置之后,分界线仍然是单调的。所以即使是仅考虑单调的分界线状态,也一定可以搜索到所有状态,这样可以简化状态降低复杂度。然而这样复杂度仍然较高。这里给出几种:剪枝的手段:

  • 状态可以记忆化,哈希之后用 map 存储;
  • 假设某一行有一个折角(分界线相比上一行发生左移),如果折角的右下方没有一个 1 1 1,则一定会出现空矩形,不合法;
  • 枚举当前矩形时, 1 1 1 的个数超过 1 1 1 后可以直接停止,不合法。

这篇关于Day1 省选衔接题 思路总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892641

相关文章

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

Kubernetes常用命令大全近期总结

《Kubernetes常用命令大全近期总结》Kubernetes是用于大规模部署和管理这些容器的开源软件-在希腊语中,这个词还有“舵手”或“飞行员”的意思,使用Kubernetes(有时被称为“... 目录前言Kubernetes 的工作原理为什么要使用 Kubernetes?Kubernetes常用命令总

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert