小白也能看懂的self-attention教程

2024-04-10 23:44

本文主要是介绍小白也能看懂的self-attention教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

自从2017年论文《Attention Is All You Need》问世以来,基于AttentionTransformer网络在NLP领域和计算视觉CV领域都得到了广泛的应用。

本文旨在用简单易懂的语句来告诉大家self-attention的数学原理,并配以尽可能直观的图片来进行讲解说明,希望大家可以实现自己的自注意力模块!

闲话少说,我们直接开始吧!

2. 定义

在原始Transformer论文中,self-attention主要用于为单词生成新的向量表示,这些向量表示可以帮助机器理解句子中不同单词之间的中重要程度。它的输入为用单词嵌入向量(token embeddings)用来代替文本语句,token embedding实质上就是单词的多维的数字表示。而经过self-attention处理后,将这个输入序列转换成一个新的表示,同时可以保留原始单词输入语序,使其成为Transformer等强大人工智能模型的重要组成部分。

在心理学中,注意力是有选择地专注于一件或几件事情而忽略其他不太重要的事情的认知过程。神经网络被认为是以简化方式来模仿人脑的动作。注意力机制也是类似,通过它可以让神经网络有选择地专注于一些重要的输入,而忽略不太重要的输入。

我们来打个比方,假设我们正在查看一张幼儿园毕业照的合影。通常,会有好几排老师学生组成的队列,而老师一般坐在多个孩子的中间。现在,如果有人问问题,“一共有多少人?”,你会如何回答?

只需数人头,对吧?大家无需考虑照片中的任何其他内容。现在,如果有人问一个不同的问题,“照片中的老师是谁?”,你的大脑确切地知道该怎么做。它只会开始寻找照片中中间位置具有成年人特征的人,其余的孩子将被忽略。这就是我们的大脑非常擅长实现的“注意力”。

3. 准备输入

接着,我们通过一个具体的示例,来对自注意力机制进行讲解。假设我们有三个四维的token embedding作为self-attention的输入,换句话说就是我们有三个words作为输入,我们将每个word用一个四维的向量进行代替,如下所示:

Input 1: [1, 0, 1, 0] 
Input 2: [0, 2, 0, 2]
Input 3: [1, 1, 1, 1]

图示如下:
在这里插入图片描述

4. 初始化权重

接着,我们需要将每个input和三个权重矩阵分别相乘,进而得到我们的key(橙色),query(红色),value(紫色)。如下:
在这里插入图片描述

由于我们的inputshape为1×4,假设keyqueryvalue的shape为1×3,因此可以推出与input相乘的三个权重矩阵的shape均为4×3。观察上图,每个输入(绿色)都乘以一组keys的权重、一组querys的权重和一组values的权重,然后得到对应的key(橙色),query(红色),value(紫色)。

在我们的例子中,我们将三组权重初始化如下:

# init weight for key
w_key=[[0, 0, 1],[1, 1, 0],[0, 1, 0],[1, 1, 0]]# init weight for queryw_query=[[1, 0, 1],[1, 0, 0],[0, 0, 1],[0, 1, 1]]# init weight for valuew_value=[[0, 2, 0],[0, 3, 0],[1, 0, 3],[1, 1, 0]]

在神经网络初始化权重设置中,这些权重通常是很小的浮点数,一般使用随机分布(如Gaussian、Xavier)来随机初始化。权重初始化放在训练之前。

5. 计算key

经过以上准备工作,现在我们有了三组权重,让我们获得每个输入下的keyqueryvalue的向量表示。

首先来针对input1计算key:

               [0, 0, 1]
[1, 0, 1, 0] x [1, 1, 0] = [0, 1, 1][0, 1, 0][1, 1, 0]

接着使用同样的weight来为输入input2计算对应的key:

               [0, 0, 1]
[0, 2, 0, 2] x [1, 1, 0] = [4, 4, 0][0, 1, 0][1, 1, 0] 

接着使用同样的weight来为输入input3计算对应的key:

               [0, 0, 1]
[1, 1, 1, 1] x [1, 1, 0] = [2, 3, 1][0, 1, 0][1, 1, 0]

更快的方法是对合并上述操作进行矩阵运算:

               [0, 0, 1]
[1, 0, 1, 0]   [1, 1, 0]   [0, 1, 1]
[0, 2, 0, 2] x [0, 1, 0] = [4, 4, 0]
[1, 1, 1, 1]   [1, 1, 0]   [2, 3, 1]

图示如下:
在这里插入图片描述

6. 计算value和query

我们使用同样的方法来获取每个输入对应的value,如下:

               [0, 2, 0]
[1, 0, 1, 0]   [0, 3, 0]   [1, 2, 3] 
[0, 2, 0, 2] x [1, 0, 3] = [2, 8, 0]
[1, 1, 1, 1]   [1, 1, 0]   [2, 6, 3]

图示如下:
在这里插入图片描述

对于query,也进行类似操作,如下:

               [1, 0, 1]
[1, 0, 1, 0]   [1, 0, 0]   [1, 0, 2]
[0, 2, 0, 2] x [0, 0, 1] = [2, 2, 2]
[1, 1, 1, 1]   [0, 1, 1]   [2, 1, 3]

图示如下:
在这里插入图片描述

7. 计算attention scores

为了获得注意力得分(attention scores),我们用input1query(红色)和input1,input2,input3key(橙色)的转置分别计算点积。因此针对input1我们获得了3个注意力得分(蓝色),分别表示input1input1,intpu2,intpu3的注意力得分。

            [0, 4, 2]
[1, 0, 2] x [1, 4, 3] = [2, 4, 4][1, 0, 1]

图示如下:
在这里插入图片描述

请注意,我们只使用input1中的query。我们针对其他输入inputquery可以重复同样的步骤,不在累述。

8. 计算softmax

我们在得到了针对input1queryattention scores后,我们可以使用softmax函数来执行归一化操作,使得各项相加后和为1,如下:

softmax([2, 4, 4]) = [0.0, 0.5, 0.5]

图示如下:
在这里插入图片描述

请注意,为了便于阅读,我们针对softmax输出进行四舍五入到小数点后1位。

9. 与values相乘

接着将每个输入的softmax之后的注意力得分(蓝色)乘以其相应的值(紫色)。这将产生3个alignment vectors(黄色)。在本文中,我们将把它们称为weighted values。如下:

1: 0.0 * [1, 2, 3] = [0.0, 0.0, 0.0]
2: 0.5 * [2, 8, 0] = [1.0, 4.0, 0.0]
3: 0.5 * [2, 6, 3] = [1.0, 3.0, 1.5]

图示如下:
在这里插入图片描述

10. 对weighted values求和得到output

在上一步骤中,我们针对input1query(红色)产生了三个weighted values(黄色),我们将这三个weighted values 按元素相加,得到我们的输出output1(深绿色),表示针对input1中的query与所有输入的key(包含input1)之间的atten score作为对value求和时的权重。

  [0.0, 0.0, 0.0]
+ [1.0, 4.0, 0.0]
+ [1.0, 3.0, 1.5]
-----------------
= [2.0, 7.0, 1.5]

图示如下:
在这里插入图片描述

11. 针对其他输入重复即可

现在我们已经完成了针对output1的计算可视化过程,那么对于output2output3我们只需要重复上述步骤4到7即可。我相信大家可以自己动身计算咯!
在这里插入图片描述

注意:由于计算atten score时使用的时点积操作,所以queryvalue的维度必须始终相同。但是,value的维度可能与queryvalue不同。由此产生的输出将和value的维度保持一致。

12. 总结

本文重点介绍了自注意力机制的相关原理,transformer正是利用注意力机制的力量在自然语言处理行业取得前所未有的成果。希望大家可以通过本文,对自注意力机制有直观的理解!

您学废了嘛?

13. 参考

本文参考链接如下:

链接1:戳我
链接2:戳我

这篇关于小白也能看懂的self-attention教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892491

相关文章

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Web实现类似Excel表格锁定功能实战教程

《JavaWeb实现类似Excel表格锁定功能实战教程》本文将详细介绍通过创建特定div元素并利用CSS布局和JavaScript事件监听来实现类似Excel的锁定行和列效果的方法,感兴趣的朋友跟随... 目录1. 模拟Excel表格锁定功能2. 创建3个div元素实现表格锁定2.1 div元素布局设计2.

SpringBoot连接Redis集群教程

《SpringBoot连接Redis集群教程》:本文主要介绍SpringBoot连接Redis集群教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 依赖2. 修改配置文件3. 创建RedisClusterConfig4. 测试总结1. 依赖 <de

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

MySQL 安装配置超完整教程

《MySQL安装配置超完整教程》MySQL是一款广泛使用的开源关系型数据库管理系统(RDBMS),由瑞典MySQLAB公司开发,目前属于Oracle公司旗下产品,:本文主要介绍MySQL安装配置... 目录一、mysql 简介二、下载 MySQL三、安装 MySQL四、配置环境变量五、配置 MySQL5.1

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写