容斥原理+欧拉函数+抽屉原理

2024-04-10 18:38

本文主要是介绍容斥原理+欧拉函数+抽屉原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(1)容斥原理 :重要应用 求出一个数n在区间[1,m]里面有多少个数与它互质。假设数据不超过int型。

 

实现过程分为两步:

1, 求出m的质因子 并保存在数组里面;

2, 求出区间[1,n]里面有多少个数与m不互质。

 

代码:

 
  1. #include <cstdio>

  2. #include <cmath>

  3. int p[10];//保存质因子 int型n不会超过10个

  4. int k;//记录质因子个数

  5. void getp(int n)//求出n的质因子

  6. {

  7. int i;

  8. k = 0;//初始化

  9. for(i = 2; i*i <= n; i++)

  10. {

  11. if(n % i == 0)

  12. {

  13. p[k++] = i;//保存质因子

  14. while(n % i == 0)

  15. n /= i;

  16. }

  17. }

  18. if(n > 1) p[k++] = n;//本身是质数

  19. }

  20. int nop(int m)//求出区间[1,m]里面有多少个数与n不互质

  21. {

  22. int top = 0;//队列顶点

  23. int que[10100];

  24. int i, j, t;

  25. que[top++] = -1;//队列数组保存n所有质因子任意不相同组合的乘积

  26. for(i = 0; i < k; i++)

  27. {

  28. t = top;//利于下面计算

  29. for(j = 0; j < t; j++)

  30. {

  31. que[top++] = que[j] * p[i] * (-1);//奇加偶减

  32. }

  33. }

  34. int sum = 0;//统计个数

  35. for(i = 1; i < top; i++)

  36. sum += m / que[i];

  37. return sum;

  38. }

  39. int main()

  40. {

  41. int n, m;

  42. while(scanf("%d%d", &n, &m), n||m)//求区间[1,m]内有多少个数与n互质

  43. {

  44. getp(n);

  45. printf("%d\n", m-nop(m));

  46. }

  47. return 0;

  48. }


上面的代码实现是很简单的,也是很好理解的。 网上还有DFS版本,位运算版本的以及递归版本的,这里再给个递归的(另外本人理解不太透彻),至于其它两个有兴趣的可以上网查下。

 

递归版本:

 

 
  1. #include <cstdio>

  2. #include <cmath>

  3. int p[10];//保存质因子 int型n不会超过10个

  4. int k;//记录质因子个数

  5. void getp(int n)//求出n的质因子

  6. {

  7. int i;

  8. k = 0;//初始化

  9. for(i = 2; i*i <= n; i++)

  10. {

  11. if(n % i == 0)

  12. {

  13. p[k++] = i;//保存质因子

  14. while(n % i == 0)

  15. n /= i;

  16. }

  17. }

  18. if(n > 1) p[k++] = n;//本身是质数

  19. }

  20. int nop(int m, int t)//求出区间[1,m]里面有多少个数与n不互质

  21. {

  22. int i, sum = 0;

  23. for(i = t; i < k; i++)

  24. sum += m / p[i] - nop(m/p[i],i+1);

  25. return sum;

  26. }

  27. int main()

  28. {

  29. int n, m;

  30. while(scanf("%d%d", &n, &m), n||m)//求区间[1,m]内有多少个数与n互质

  31. {

  32. getp(n);

  33. printf("%d\n", m-nop(m, 0));

  34. }

  35. return 0;

  36. }


 

(2)欧拉函数:说白了,就是指一个数n在[1,n-1]区间有多少个数与它互质(和容斥原理一样的应用)。

比如说,euler[n] = m代表的意思是在区间[1,n-1]里面有m个数与n互质。

欧拉函数公式:(我们假设n的质因子有x,y) euler[n] = n * (1-1/x) * (1-1/y)。若有多个继续添上即可。

欧拉函数拓展:小于或等于n的数中(n > 1),与n互质的数的总和为:euler[n] * n / 2。

现给个实例:求区间[1,100]内所有数的欧拉函数。这里eu[1] = 1。我不知道会不会有一些题目eu[1] = 0。。。注意啊

 

求欧拉函数 有两个思路:

1, 筛素数打表,用数组记录每个数的欧拉函数(适用于n不是很大的情况,因为数组不能开无限大);

2, 直接求法计算单个欧拉函数,对于有些题目会比较慢(对于很大的n依然可以求解)。

 

筛素法:

 
  1. #include <cstdio>

  2. #include <cstring>

  3. #define MAX 100+1

  4. int eu[MAX];

  5. void euler()

  6. {

  7. int i, j;

  8. eu[1] = 1;//1的欧拉函数为1 看题目而定

  9. for(i = 2; i < MAX; i++)

  10. {

  11. if(!eu[i])

  12. {

  13. for(j = i; j < MAX; j += i)

  14. {

  15. if(!eu[j]) eu[j] = j;

  16. eu[j] = eu[j] * (i-1) / i;

  17. }

  18. }

  19. }

  20. }

  21. int main()

  22. {

  23. euler();

  24. for(int i = 1; i < MAX; i++)

  25. printf("%d\n", eu[i]);

  26. return 0;

  27. }



 

计算单个欧拉函数:

 

 
  1. #include <cstdio>

  2. #include <cstring>

  3. #define MAX 100+1

  4. int euler(int n)//求n的欧拉函数

  5. {

  6. int i;

  7. int eu = n;//欧拉函数

  8. for(i = 2; i*i <= n; i++)

  9. {

  10. if(n % i == 0)//质因子

  11. {

  12. eu = eu * (i-1) / i;

  13. while(n % i == 0)

  14. n /= i;//避免再次累加

  15. }

  16. }

  17. if(n > 1) eu = eu * (n-1) / n;//本身就是 质数

  18. return eu;

  19. }

  20. int main()

  21. {

  22. for(int i = 1; i < MAX; i++)

  23. printf("%d\n", euler(i));

  24. return 0;

  25. }


 

对于很多题目,容斥原理若和欧拉函数一起使用,或许会增加程序效率。

 

 

(3) 抽屉原理: 又称鸽巢原理,指的是n+1个苹果放进n个盒子里面,一定会有一个盒子有两个苹果。

定理: 一个由n个数构成的数列,总能找到若干个连续的数 使它们之和能被n整除。

证明: 对于数列里面的元素a[1],a[2],...... a[n]。我们可以构造一个数组sum[],用sum[ i ]来存储前i个元素之和(包括第i个元素)。

那么sum数组里面所有的元素只有两种情况:(1) 至少存在一个sum[ i ] 能被n整除;(2) 对于所有的sum[ i ] 都不能被n整除 。

 

情况(1):定理成立。。。

情况(2):首先我们知道sum数组里面有n个元素,又因为它们都不能被n整除,那么我们可以得到以下信息:任意的(sum[i] %n)都非0且结果都在(1到n-1范围里面)

                  这样的话--> n个结果在  1到n-1 范围内,必然存在两个相等的结果。而这两个相同结果所对应的sum[] 之差 必定能被 n整除。

 

证毕。

 

对于抽屉原理,可以有以下拓展:(1) 数列里面元素个数只要大于或者等于n也成立 (2) 找到的 若干个数 不是连续的也成立。

 

转自:https://blog.csdn.net/chenzhenyu123456/article/details/46458991

这篇关于容斥原理+欧拉函数+抽屉原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891828

相关文章

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实