Java各版本新增特性, Since Java 8

2024-04-10 12:38
文章标签 java 特性 新增 版本 since

本文主要是介绍Java各版本新增特性, Since Java 8,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Java 8
Reactor of Java 这一章来自于《Spring in Action, 5th》 的笔记,因为这本书讲Reactor of Java讲的太好了,所以作为笔记摘抄了下来。

Reactor of Java
In an imperative programming model, the code would look something like this:

String name = “Craig”;
String capitalName = name.toUpperCase();
String greeting = "Hello, " + capitalName + “!”;
System.out.println(greeting);
In the imperative model, each line of code performs a step, one right after the other, and definitely in the same thread. Each step blocks the executing thread from moving to the next step until complete. In contrast, functional, reactive code could achieve the same thing like this:

Mono.just(“Craig”)
.map(n -> n.toUpperCase())
.map(n -> “Hello, " + n + " !”)
.subscribe(System.out::println);
The Mono in the example is one of Reactor’s two core types. Flux is the other. Both are implementations of Reactive Streams’ Publisher.
A Flux represents** a pipeline of zero, one, or many (potentially infinite) data items**.
A Mono is a specialized reactive type that’s optimized for when the dataset is known to have no more than one data item.

CREATING FROM OBJECTS

Flux fruitFlux = Flux
.just(“Apple”, “Orange”, “Grape”, “Banana”, “Strawberry”);
fruitFlux.subscribe(f -> System.out.println("Hello " + f));

// for test
StepVerifier.create(fruitFlux)
.expectNext(“Apple”)
.expectNext(“Orange”)
.expectNext(“Grape”)
.expectNext(“Banana”)
.expectNext(“Strawberry”)
.verifyComplete();
CREATING FROM COLLECTIONS

Stream fruitStream = Stream.of(“Apple”, “Orange”, “Grape”, “Banana”, “Strawberry”);
Flux fruitFlux2 = Flux.fromStream(fruitStream);
fruitFlux2.subscribe(s -> System.out.println(s));

    List<String> fruitList = new ArrayList<>();fruitList.add("Apple");fruitList.add("Orange");fruitList.add("Grape");fruitList.add("Banana");fruitList.add("Strawberry");Flux<String> fruitFlux3 = Flux.fromIterable(fruitList);fruitFlux3.subscribe(s -> System.out.println(s));String[] fruits = new String[] {"Apple", "Orange", "Grape", "Banana", "Strawberry" };Flux<String> fruitFlux = Flux.fromArray(fruits);fruitFlux.subscribe(s -> System.out.println(s));StepVerifier.create(fruitFlux).expectNext("Apple").expectNext("Orange").expectNext("Grape").expectNext("Banana").expectNext("Strawberry").verifyComplete();

GENERATING FLUX DATA

Flux intervalFlux =
Flux.range(1, 5);
intervalFlux.subscribe(integer -> System.out.println(integer));
StepVerifier.create(intervalFlux)
.expectNext(1)
.expectNext(2)
.expectNext(3)
.expectNext(4)
.expectNext(5)
.verifyComplete();

Flux intervalFlux =
Flux.interval(Duration.ofSeconds(1))
.take(5);
intervalFlux.subscribe(i -> System.out.println(i));
StepVerifier.create(intervalFlux)
.expectNext(0L)
.expectNext(1L)
.expectNext(2L)
.expectNext(3L)
.expectNext(4L)
.verifyComplete();
MERGING REACTIVE TYPES

Flux characterFlux = Flux
.just(“Garfield”, “Kojak”, “Barbossa”)
.delayElements(Duration.ofMillis(500));
Flux foodFlux = Flux
.just(“Lasagna”, “Lollipops”, “Apples”)
.delaySubscription(Duration.ofMillis(250))
.delayElements(Duration.ofMillis(500));
Flux mergedFlux = characterFlux.mergeWith(foodFlux);
mergedFlux.subscribe(s -> System.out.println(s));
StepVerifier.create(mergedFlux)
.expectNext(“Garfield”)
.expectNext(“Lasagna”)
.expectNext(“Kojak”)
.expectNext(“Lollipops”)
.expectNext(“Barbossa”)
.expectNext(“Apples”)
.verifyComplete();

Flux characterFlux = Flux
.just(“Garfield”, “Kojak”, “Barbossa”);
Flux foodFlux = Flux
.just(“Lasagna”, “Lollipops”, “Apples”);
Flux<Tuple2<String, String>> zippedFlux =
Flux.zip(characterFlux, foodFlux);
zippedFlux.subscribe(x -> System.out.println(x));
StepVerifier.create(zippedFlux)
.expectNextMatches(p ->
p.getT1().equals(“Garfield”) &&
p.getT2().equals(“Lasagna”))
.expectNextMatches(p ->
p.getT1().equals(“Kojak”) &&
p.getT2().equals(“Lollipops”))
.expectNextMatches(p ->
p.getT1().equals(“Barbossa”) &&
p.getT2().equals(“Apples”))
.verifyComplete();

Flux characterFlux = Flux
.just(“Garfield”, “Kojak”, “Barbossa”);
Flux foodFlux = Flux
.just(“Lasagna”, “Lollipops”, “Apples”);
Flux zippedFlux =
Flux.zip(characterFlux, foodFlux, (c, f) -> c + " eats " + f);
zippedFlux.subscribe(x -> System.out.println(x));
StepVerifier.create(zippedFlux)
.expectNext(“Garfield eats Lasagna”)
.expectNext(“Kojak eats Lollipops”)
.expectNext(“Barbossa eats Apples”)
.verifyComplete();
SELECTING THE FIRST REACTIVE TYPE TO PUBLISH

Flux slowFlux = Flux.just(“tortoise”, “snail”, “sloth”)
.delaySubscription(Duration.ofMillis(100));
Flux fastFlux = Flux.just(“hare”, “cheetah”, “squirrel”);
Flux firstFlux = Flux.first(slowFlux, fastFlux);
StepVerifier.create(firstFlux)
.expectNext(“hare”)
.expectNext(“cheetah”)
.expectNext(“squirrel”)
.verifyComplete();

FILTERING DATA FROM REACTIVE TYPES

Flux skipFlux = Flux.just(
“one”, “two”, “skip a few”, “ninety nine”, “one hundred”)
.skip(3);
StepVerifier.create(skipFlux)
.expectNext(“ninety nine”, “one hundred”)
.verifyComplete();

Flux skipFlux = Flux.just(
“one”, “two”, “skip a few”, “ninety nine”, “one hundred”)
.delayElements(Duration.ofSeconds(1))
.skip(Duration.ofSeconds(4));
StepVerifier.create(skipFlux)
.expectNext(“ninety nine”, “one hundred”)
.verifyComplete();

Flux nationalParkFlux = Flux.just(
“Yellowstone”, “Yosemite”, “Grand Canyon”,
“Zion”, “Grand Teton”)
.take(3);
StepVerifier.create(nationalParkFlux)
.expectNext(“Yellowstone”, “Yosemite”, “Grand Canyon”)
.verifyComplete();

Flux nationalParkFlux = Flux.just(
“Yellowstone”, “Yosemite”, “Grand Canyon”,
“Zion”, “Grand Teton”)
.delayElements(Duration.ofSeconds(1))
.take(Duration.ofMillis(3500));
StepVerifier.create(nationalParkFlux)
.expectNext(“Yellowstone”, “Yosemite”, “Grand Canyon”)
.verifyComplete();

Flux nationalParkFlux = Flux.just(
“Yellowstone”, “Yosemite”, “Grand Canyon”,
“Zion”, “Grand Teton”)
.filter(np -> !np.contains(" "));
StepVerifier.create(nationalParkFlux)
.expectNext(“Yellowstone”, “Yosemite”, “Zion”)
.verifyComplete();

Flux animalFlux = Flux.just(
“dog”, “cat”, “bird”, “dog”, “bird”, “anteater”)
.distinct();
StepVerifier.create(animalFlux)
.expectNext(“dog”, “cat”, “bird”, “anteater”)
.verifyComplete();
MAPPING REACTIVE DATA

Flux playerFlux = Flux
.just(“Michael Jordan”, “Scottie Pippen”, “Steve Kerr”)
.map(n -> {
String[] split = n.split("\s");
return new Player(split[0], split[1]);
});
StepVerifier.create(playerFlux)
.expectNext(new Player(“Michael”, “Jordan”))
.expectNext(new Player(“Scottie”, “Pippen”))
.expectNext(new Player(“Steve”, “Kerr”))
.verifyComplete();

Flux playerFlux = Flux
.just(“Michael Jordan”, “Scottie Pippen”, “Steve Kerr”)
.flatMap(n -> Mono.just(n)
.map(p -> {
String[] split = p.split("\s");
return new Player(split[0], split[1]);
})
.subscribeOn(Schedulers.parallel())
);
List playerList = Arrays.asList(
new Player(“Michael”, “Jordan”),
new Player(“Scottie”, “Pippen”),
new Player(“Steve”, “Kerr”));
StepVerifier.create(playerFlux)
.expectNextMatches(p -> playerList.contains§)
.expectNextMatches(p -> playerList.contains§)
.expectNextMatches(p -> playerList.contains§)
.verifyComplete();
BUFFERING DATA ON A REACTIVE STREAM

Flux fruitFlux = Flux.just(
“apple”, “orange”, “banana”, “kiwi”, “strawberry”);

Flux<List> bufferedFlux = fruitFlux.buffer(3);

StepVerifier
.create(bufferedFlux)
.expectNext(Arrays.asList(“apple”, “orange”, “banana”))
.expectNext(Arrays.asList(“kiwi”, “strawberry”))
.verifyComplete();

Buffering values from a reactive Flux into non-reactive List collections seems counterproductive. But when you combine buffer() with flatMap(), it enables each of the List collections to be processed in parallel:
Flux.just(
“apple”, “orange”, “banana”, “kiwi”, “strawberry”)
.buffer(3)
.flatMap(x ->
Flux.fromIterable(x)
.map(y -> y.toUpperCase())
.subscribeOn(Schedulers.parallel())
.log()
).subscribe();

Flux fruitFlux = Flux.just(
“apple”, “orange”, “banana”, “kiwi”, “strawberry”);

Mono<List> fruitListMono = fruitFlux.collectList();

StepVerifier
.create(fruitListMono)
.expectNext(Arrays.asList(
“apple”, “orange”, “banana”, “kiwi”, “strawberry”))
.verifyComplete();

Flux animalFlux = Flux.just(
“aardvark”, “elephant”, “koala”, “eagle”, “kangaroo”);

Mono<Map<Character, String>> animalMapMono =
animalFlux.collectMap(a -> a.charAt(0));

StepVerifier
.create(animalMapMono)
.expectNextMatches(map -> {
return
map.size() == 3 &&
map.get(‘a’).equals(“aardvark”) &&
map.get(‘e’).equals(“eagle”) &&
map.get(‘k’).equals(“kangaroo”);
})
.verifyComplete();

Performing logic operations on reactive types
Flux animalFlux = Flux.just(
“aardvark”, “elephant”, “koala”, “eagle”, “kangaroo”);

Mono hasAMono = animalFlux.all(a -> a.contains(“a”));
StepVerifier.create(hasAMono)
.expectNext(true)
.verifyComplete();

Mono hasKMono = animalFlux.all(a -> a.contains(“k”));
StepVerifier.create(hasKMono)
.expectNext(false)
.verifyComplete();

Flux animalFlux = Flux.just(
“aardvark”, “elephant”, “koala”, “eagle”, “kangaroo”);

Mono hasAMono = animalFlux.any(a -> a.contains(“a”));

StepVerifier.create(hasAMono)
.expectNext(true)
.verifyComplete();

Mono hasZMono = animalFlux.any(a -> a.contains(“z”));
StepVerifier.create(hasZMono)
.expectNext(false)
.verifyComplete();
Spring MVC change to Spring WebFlux

@GetMapping("/recent")
public Iterable recentTacos() {
PageRequest page = PageRequest.of(
0, 12, Sort.by(“createdAt”).descending());
return tacoRepo.findAll(page).getContent();
}

@GetMapping("/recent")
public Flux recentTacos() {
return Flux.fromIterable(tacoRepo.findAll()).take(12);
}

@PostMapping(consumes=“application/json”)
@ResponseStatus(HttpStatus.CREATED)
public Taco postTaco(@RequestBody Taco taco) {
return tacoRepo.save(taco);
}
@PostMapping(consumes=“application/json”)
@ResponseStatus(HttpStatus.CREATED)
public Mono postTaco(@RequestBody Mono tacoMono) {
return tacoRepo.saveAll(tacoMono).next();
}

public interface TacoRepository
extends ReactiveCrudRepository<Taco, Long> {
}
@GetMapping("/{id}")
public Taco tacoById(@PathVariable(“id”) Long id) {
Optional optTaco = tacoRepo.findById(id);
if (optTaco.isPresent()) {
return optTaco.get();
}
return null;
}
@GetMapping("/{id}")
public Mono tacoById(@PathVariable(“id”) Long id) {
return tacoRepo.findById(id);
}
WORKING WITH RXJAVA TYPES

@GetMapping("/recent")
public Observable recentTacos() {
return tacoService.getRecentTacos();
}

@GetMapping("/{id}")
public Single tacoById(@PathVariable(“id”) Long id) {
return tacoService.lookupTaco(id);
}
Developing Reactive APIs

@Configuration
public class RouterFunctionConfig {
@Autowired
private TacoRepository tacoRepo;
@Bean
public RouterFunction<?> routerFunction() {
return route(GET("/design/taco"), this::recents)
Testing reactive controllers 279
.andRoute(POST("/design"), this::postTaco);
}
public Mono recents(ServerRequest request) {
return ServerResponse.ok()
.body(tacoRepo.findAll().take(12), Taco.class);
}
public Mono postTaco(ServerRequest request) {
Mono taco = request.bodyToMono(Taco.class);
Mono savedTaco = tacoRepo.save(taco);
return ServerResponse
.created(URI.create(
“http://localhost:8080/design/taco/” +
savedTaco.getId()))
.body(savedTaco, Taco.class);
}
}
Test Reactive Rest APIs

// Test Get Method
Taco[] tacos = {
testTaco(1L), testTaco(2L),
testTaco(3L), testTaco(4L),
testTaco(5L), testTaco(6L),
testTaco(7L), testTaco(8L),
testTaco(9L), testTaco(10L),
testTaco(11L), testTaco(12L),
testTaco(13L), testTaco(14L),
testTaco(15L), testTaco(16L)};
Flux tacoFlux = Flux.just(tacos);
TacoRepository tacoRepo = Mockito.mock(TacoRepository.class);
when(tacoRepo.findAll()).thenReturn(tacoFlux);
WebTestClient testClient = WebTestClient.bindToController(
new DesignTacoController(tacoRepo))
.build();
testClient.get().uri("/design/recent")
.exchange()
.expectStatus().isOk()
.expectBody()
.jsonPath(" " ) . i s A r r a y ( ) . j s o n P a t h ( " ").isArray() .jsonPath(" ").isArray().jsonPath("").isNotEmpty()
.jsonPath(" [ 0 ] . i d " ) . i s E q u a l T o ( t a c o s [ 0 ] . g e t I d ( ) . t o S t r i n g ( ) ) . j s o n P a t h ( " [0].id").isEqualTo(tacos[0].getId().toString()) .jsonPath(" [0].id").isEqualTo(tacos[0].getId().toString()).jsonPath("[0].name").isEqualTo(“Taco 1”).jsonPath(" [ 1 ] . i d " ) . i s E q u a l T o ( t a c o s [ 1 ] . g e t I d ( ) . t o S t r i n g ( ) ) . j s o n P a t h ( " [1].id") .isEqualTo(tacos[1].getId().toString()).jsonPath(" [1].id").isEqualTo(tacos[1].getId().toString()).jsonPath("[1].name")
.isEqualTo(“Taco 2”).jsonPath(" [ 11 ] . i d " ) . i s E q u a l T o ( t a c o s [ 11 ] . g e t I d ( ) . t o S t r i n g ( ) ) . j s o n P a t h ( " [11].id") .isEqualTo(tacos[11].getId().toString()) .jsonPath(" [11].id").isEqualTo(tacos[11].getId().toString()).jsonPath("[11].name").isEqualTo(“Taco 12”).jsonPath(" [ 12 ] " ) . d o e s N o t E x i s t ( ) . j s o n P a t h ( " [12]") .doesNotExist().jsonPath(" [12]").doesNotExist().jsonPath("[12]").doesNotExist();

// Test POST Method

TacoRepository tacoRepo = Mockito.mock(
TacoRepository.class);
Mono unsavedTacoMono = Mono.just(testTaco(null));
Taco savedTaco = testTaco(null);
savedTaco.setId(1L);
Mono savedTacoMono = Mono.just(savedTaco);
when(tacoRepo.save(any())).thenReturn(savedTacoMono);
WebTestClient testClient = WebTestClient.bindToController(
new DesignTacoController(tacoRepo)).build();
testClient.post()
.uri("/design")
.contentType(MediaType.APPLICATION_JSON)
.body(unsavedTacoMono, Taco.class)
.exchange()
.expectStatus().isCreated()
.expectBody(Taco.class)
.isEqualTo(savedTaco);

// Testing with a live server
@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)
public class DesignTacoControllerWebTest {
@Autowired
private WebTestClient testClient;
@Test
public void shouldReturnRecentTacos() throws IOException {
testClient.get().uri("/design/recent")
.accept(MediaType.APPLICATION_JSON).exchange()
.expectStatus().isOk()
.expectBody()
.jsonPath(" [ ? ( @ . i d = = ′ T A C O 1 ′ ) ] . n a m e " ) . i s E q u a l T o ( " C a r n i v o r e " ) . j s o n P a t h ( " [?(@.id == 'TACO1')].name") .isEqualTo("Carnivore") .jsonPath(" [?(@.id==TACO1)].name").isEqualTo("Carnivore").jsonPath("[?(@.id == ‘TACO2’)].name")
.isEqualTo(“Bovine Bounty”)
.jsonPath("$[?(@.id == ‘TACO3’)].name")
.isEqualTo(“Veg-Out”);
}
}
Consume Reactive APIs

Flux ingredients = WebClient.create()
.get()
.uri(“http://localhost:8080/ingredients”)
.retrieve()
.bodyToFlux(Ingredient.class);
ingredients.subscribe(i -> { …})

Flux ingredients = WebClient.create()
.get()
.uri(“http://localhost:8080/ingredients”)
.retrieve()
.bodyToFlux(Ingredient.class);
ingredients
.timeout(Duration.ofSeconds(1))
.subscribe(
i -> { … },
e -> {
// handle timeout error
})

//Handing errors
ingredientMono.subscribe(
ingredient -> {
// handle the ingredient data

},
error-> {
// deal with the error

});

Mono ingredientMono = webClient
.get()
.uri(“http://localhost:8080/ingredients/{id}”, ingredientId)
.retrieve()
.onStatus(HttpStatus::is4xxClientError,
response -> Mono.just(new UnknownIngredientException()))
.bodyToMono(Ingredient.class);
Java 9
jshell

无法用单个下划线作为变量名称

int _ = 3; // java9 or above , error
String a = Objects.requireNonNullElse(m,“Bc”); // 若m不为null,则a = m,若m为null,则a = “Bc”
-cp, -classpath, --class-path(Java9新增)
Multi-Release JAR Files

–release
–class-path instead of -classpath
–version instead of -version
–module-path option has a shortcut -p
更多,见jeps

Java8中,接口可以有静态方法的默认实现,例:

public interface Test {
public static void print() {
System.out.println(“interface print”);
}

default void pout() {System.out.println();
}

}
Java9中,可以支持private的静态方法实现。

public interface Test {
private static void print() {
System.out.println(“interface print”);
}

static void pout() {print();
}

}
Optional.ofNullable(date).orElseGet(() -> newDate()); // date为null,才会执行newDate()方法,否则不执行newDate()方法
Optional.ofNullable(date).orElse(newDate()); // 无论date是否为null,都会执行newDate()方法
Java7中,可以使用try-with-Resources

try(Resouce res = …) {
work with res
}
res.close()会被自动执行

例:

try (var in = new Scanner(new FileInputStream(“C:\Users\Young\Desktop\新建文件夹\1.tx.txt”), StandardCharsets.UTF_8);
var out = new PrintWriter(“C:\Users\Young\Desktop\新建文件夹\out.txt”, StandardCharsets.UTF_8)) {
while (in.hasNext()) {
out.println(in.next().toUpperCase());
}
}
in 和 out执行完毕后都会自动关闭资源

在Java9 中,你可以在try中预先声明资源
例:

public static void printAll(String[] lines, PrintWriter out) {
try (out) { // effectively final variable
for (String line : lines) {
out.println(line);
} // out.close() called here
}
}
StackWalker用法示例

public class App {
/**
* Computes the factorial of a number
*
* @param n a non-negative integer
* @return n! = 1 * 2 * . . . * n
*/
public static int factorial(int n) {
System.out.println(“factorial(” + n + “):”);
var walker = StackWalker.getInstance();
walker.forEach(System.out::println);
int r;
if (n <= 1) {
r = 1;
} else {
r = n * factorial(n - 1);
}
System.out.println("return " + r);
return r;
}

public static void main(String[] args) {try (var in = new Scanner(System.in)) {System.out.print("Enter n: ");int n = in.nextInt();factorial(n);}
}

}
Java 9 expands the use of the diamond syntax to situations where it was previously not accepted. For example , you can now use diamonds with anonymous subclasses.

ArrayList list = new ArrayList<>(){
@Override
public String get(int index) {
return super.get(index).replaceAll(".","*");
}
};
Java 10
无需定义变量类型,通过var关键字+初始化的值,可以推测出变量类型

var a = 2; // a表示int
var b = “hello”; // b 表示String
var date = new java.util.Date();
var obj = new Custome(); // 自定义对象
Java 11
String repeated = “Java”.repeat(3); // 三个Java字符串连接
JDK提供了jdeprscan 来检查你的代码是否使用了deprecated的方法

专题
Lambda Expression
Method Reference Equivalent Lambda Expression Notes
separator::equals x -> separator.equals(x) This is a method expression with an object and an instance method. The lambda parameter is passed as the explicit parameter of the method
String::trim x -> x.trim() This is a method expression with a class and an instance method. The lambda parameter becomes the explicit parameter of the method
String::concat (x, y) -> x.concat(y) Again, we have an instance method, but this time, with an explicit parameter. As before, the first lambda parameter becomes the implicit parameter, and the remaining ones are passed to the method
Integer::valueOf x -> Integer::valueOf(x) This is a method expression with a static method. The lambda parameter is passed to the static method
Integer::sum (x, y) -> Integer::sum(x, y) This is another static method, but this time with two parameters. Both lambda parameters are passed to the static method. The Integer.sum method was specifically created to be used as a method reference. As a lmbda, you could just write (x, y)->x + y
Integer::new x -> new Integer(x) This is a constructor reference. The lambda parameters are passed to the constructor
Integer[]::new n -> new Integer[n] This is an array constructor reference. The lambda paramter is the array length
Functional Interface Parameter Types Return Types Abstract Method Name Description Other Method
Runnable none void run Runs an action without arguments or return value
Supplier none T get Supplies a value of type T
Consumer T void accept Consumes a value of type T andThen
BiConsumer<T,U> T,U void accept Consumes value of types T and U andThen
Function<T,R> T R apply A function with argument of type T compose, andThen, identity
BiFunction<T,U,R> T,U R apply A function with arguments of types T and U andThen
UnaryOperator T T apply A unary operator on the type T compose, andThen, identity
BinaryOperator T,T T apply A binary operator on the type T andThen, maxBy, minBy
Predicate T boolean test A boolean-valued function and, or, negate, isEqual
BiPredicate<T,U> T,U boolean test A boolean-valued function with two argumnets and,or,negate
Functional interfaces for Primitive Types

p, q is int ,long double; P, Q is Int, Long, Double

Functional Interface Parameter Types Return Types Abstract Method Name
BooleanSupplier none boolean getAsBoolean
PSupplier none p getAsP
PConsumer p void accept
ObjPConsumer T,p void accept
PFunction p T apply
PToQFunction p q applyAsQ
ToPFunction T p applyAsP
ToPBiFunction<T,U> T,U p applyAsP
PUnaryOperator p p applyAsP
PBinaryOperator p,p p applyAsP
PPredicate p boolean test
Service Loaders
Proxies
Logging
Generic Programming
E for the element type of a collection
K and V for key and value type of a table
T(and the neighboring letters U and S, if neccessary) for “any type at all”
Pair a = new Pair<>(“A”, “B”);
Pair b = new Pair<>(1.1, 1.11);
System.out.println(a.getClass() == b.getClass()); // TRUE
in Java8

public static Pair makePair(Supplier constr) {
return new Pair<>(constr.get(), constr.get());
}

Pair p = Pair.makePair(String:new);
In general, there is no relationship between Pair and Pair, no matter how S and T are related.

BUT

var managerBuiddies = new Pair(ceo, cfo);
Pair<? extends Employee> buddies = managerBuddies;
Collections
Concurrency
Stream
Java 8

// 流操作
List list = new ArrayList<>();
list.add(1);
list.add(2);
list.parallelStream().filter(i -> i > 1).count();
list.stream().filter(i -> i > 1).count();
Stream words = Stream.of(contents.split(","));
// 创建流
var limits = new BigInteger(“1000”);
Stream integerStream = Stream.iterate(BigInteger.ZERO, n -> n.compareTo(limits) < 0, n -> n.add(BigInteger.ONE));
System.out.println(integerStream.count());
如果我们持有的iterable对象不是集合,那么可以通过下面的调用将其转换成一个流

StreamSupport.stream(iterable.spliterator(),false);
如果我们持有的是Iterator对象,并且希望得到一个由它的结果构成的流,那么可以使用下面的语句

StreamSupport.stream(Spliterators.spliteratorUnknowSize(iterator, Spliterator.ORDERED),false);
至关重要的是,在执行流的操作时,我们并没有修改流背后的集合。记住,流并没有收集其数据,数据一直存储在单独的集合中

Optional

String result = optionalString.orElse(""); // The wrapped string , or “” if none
String result = optionalString.orElseGet(() -> System.getProperty(“myapp.default”));
String result = optionalString.orElseThrow(IllegalStateException::new);
消费Optinal值

optionalValue.ifPresent(v -> result.add(v));
optionalValue.ifPresentOrElse(v -> System.out.println(“Found” + v),
()-> logger.warning(“no match”));
管道化Optional

Optional transformed = optionalString.filter(s -> s.length() >= 8).map(String::toUpperCase);
in Java9

// 如果optionalString的值存在,那么result为optionalString,如果值不存在,那么就会计算lambda表达式,并使用计算出来的结果
Optional transformed = optionalString.or(() -> alternatives.stream().findFirst());
深圳网站建设www.sz886.com

这篇关于Java各版本新增特性, Since Java 8的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891092

相关文章

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

java中反射Reflection的4个作用详解

《java中反射Reflection的4个作用详解》反射Reflection是Java等编程语言中的一个重要特性,它允许程序在运行时进行自我检查和对内部成员(如字段、方法、类等)的操作,本文将详细介绍... 目录作用1、在运行时判断任意一个对象所属的类作用2、在运行时构造任意一个类的对象作用3、在运行时判断

java如何解压zip压缩包

《java如何解压zip压缩包》:本文主要介绍java如何解压zip压缩包问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解压zip压缩包实例代码结果如下总结java解压zip压缩包坐在旁边的小伙伴问我怎么用 java 将服务器上的压缩文件解压出来,

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注