Java各版本新增特性, Since Java 8

2024-04-10 12:38
文章标签 java 特性 新增 版本 since

本文主要是介绍Java各版本新增特性, Since Java 8,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Java 8
Reactor of Java 这一章来自于《Spring in Action, 5th》 的笔记,因为这本书讲Reactor of Java讲的太好了,所以作为笔记摘抄了下来。

Reactor of Java
In an imperative programming model, the code would look something like this:

String name = “Craig”;
String capitalName = name.toUpperCase();
String greeting = "Hello, " + capitalName + “!”;
System.out.println(greeting);
In the imperative model, each line of code performs a step, one right after the other, and definitely in the same thread. Each step blocks the executing thread from moving to the next step until complete. In contrast, functional, reactive code could achieve the same thing like this:

Mono.just(“Craig”)
.map(n -> n.toUpperCase())
.map(n -> “Hello, " + n + " !”)
.subscribe(System.out::println);
The Mono in the example is one of Reactor’s two core types. Flux is the other. Both are implementations of Reactive Streams’ Publisher.
A Flux represents** a pipeline of zero, one, or many (potentially infinite) data items**.
A Mono is a specialized reactive type that’s optimized for when the dataset is known to have no more than one data item.

CREATING FROM OBJECTS

Flux fruitFlux = Flux
.just(“Apple”, “Orange”, “Grape”, “Banana”, “Strawberry”);
fruitFlux.subscribe(f -> System.out.println("Hello " + f));

// for test
StepVerifier.create(fruitFlux)
.expectNext(“Apple”)
.expectNext(“Orange”)
.expectNext(“Grape”)
.expectNext(“Banana”)
.expectNext(“Strawberry”)
.verifyComplete();
CREATING FROM COLLECTIONS

Stream fruitStream = Stream.of(“Apple”, “Orange”, “Grape”, “Banana”, “Strawberry”);
Flux fruitFlux2 = Flux.fromStream(fruitStream);
fruitFlux2.subscribe(s -> System.out.println(s));

    List<String> fruitList = new ArrayList<>();fruitList.add("Apple");fruitList.add("Orange");fruitList.add("Grape");fruitList.add("Banana");fruitList.add("Strawberry");Flux<String> fruitFlux3 = Flux.fromIterable(fruitList);fruitFlux3.subscribe(s -> System.out.println(s));String[] fruits = new String[] {"Apple", "Orange", "Grape", "Banana", "Strawberry" };Flux<String> fruitFlux = Flux.fromArray(fruits);fruitFlux.subscribe(s -> System.out.println(s));StepVerifier.create(fruitFlux).expectNext("Apple").expectNext("Orange").expectNext("Grape").expectNext("Banana").expectNext("Strawberry").verifyComplete();

GENERATING FLUX DATA

Flux intervalFlux =
Flux.range(1, 5);
intervalFlux.subscribe(integer -> System.out.println(integer));
StepVerifier.create(intervalFlux)
.expectNext(1)
.expectNext(2)
.expectNext(3)
.expectNext(4)
.expectNext(5)
.verifyComplete();

Flux intervalFlux =
Flux.interval(Duration.ofSeconds(1))
.take(5);
intervalFlux.subscribe(i -> System.out.println(i));
StepVerifier.create(intervalFlux)
.expectNext(0L)
.expectNext(1L)
.expectNext(2L)
.expectNext(3L)
.expectNext(4L)
.verifyComplete();
MERGING REACTIVE TYPES

Flux characterFlux = Flux
.just(“Garfield”, “Kojak”, “Barbossa”)
.delayElements(Duration.ofMillis(500));
Flux foodFlux = Flux
.just(“Lasagna”, “Lollipops”, “Apples”)
.delaySubscription(Duration.ofMillis(250))
.delayElements(Duration.ofMillis(500));
Flux mergedFlux = characterFlux.mergeWith(foodFlux);
mergedFlux.subscribe(s -> System.out.println(s));
StepVerifier.create(mergedFlux)
.expectNext(“Garfield”)
.expectNext(“Lasagna”)
.expectNext(“Kojak”)
.expectNext(“Lollipops”)
.expectNext(“Barbossa”)
.expectNext(“Apples”)
.verifyComplete();

Flux characterFlux = Flux
.just(“Garfield”, “Kojak”, “Barbossa”);
Flux foodFlux = Flux
.just(“Lasagna”, “Lollipops”, “Apples”);
Flux<Tuple2<String, String>> zippedFlux =
Flux.zip(characterFlux, foodFlux);
zippedFlux.subscribe(x -> System.out.println(x));
StepVerifier.create(zippedFlux)
.expectNextMatches(p ->
p.getT1().equals(“Garfield”) &&
p.getT2().equals(“Lasagna”))
.expectNextMatches(p ->
p.getT1().equals(“Kojak”) &&
p.getT2().equals(“Lollipops”))
.expectNextMatches(p ->
p.getT1().equals(“Barbossa”) &&
p.getT2().equals(“Apples”))
.verifyComplete();

Flux characterFlux = Flux
.just(“Garfield”, “Kojak”, “Barbossa”);
Flux foodFlux = Flux
.just(“Lasagna”, “Lollipops”, “Apples”);
Flux zippedFlux =
Flux.zip(characterFlux, foodFlux, (c, f) -> c + " eats " + f);
zippedFlux.subscribe(x -> System.out.println(x));
StepVerifier.create(zippedFlux)
.expectNext(“Garfield eats Lasagna”)
.expectNext(“Kojak eats Lollipops”)
.expectNext(“Barbossa eats Apples”)
.verifyComplete();
SELECTING THE FIRST REACTIVE TYPE TO PUBLISH

Flux slowFlux = Flux.just(“tortoise”, “snail”, “sloth”)
.delaySubscription(Duration.ofMillis(100));
Flux fastFlux = Flux.just(“hare”, “cheetah”, “squirrel”);
Flux firstFlux = Flux.first(slowFlux, fastFlux);
StepVerifier.create(firstFlux)
.expectNext(“hare”)
.expectNext(“cheetah”)
.expectNext(“squirrel”)
.verifyComplete();

FILTERING DATA FROM REACTIVE TYPES

Flux skipFlux = Flux.just(
“one”, “two”, “skip a few”, “ninety nine”, “one hundred”)
.skip(3);
StepVerifier.create(skipFlux)
.expectNext(“ninety nine”, “one hundred”)
.verifyComplete();

Flux skipFlux = Flux.just(
“one”, “two”, “skip a few”, “ninety nine”, “one hundred”)
.delayElements(Duration.ofSeconds(1))
.skip(Duration.ofSeconds(4));
StepVerifier.create(skipFlux)
.expectNext(“ninety nine”, “one hundred”)
.verifyComplete();

Flux nationalParkFlux = Flux.just(
“Yellowstone”, “Yosemite”, “Grand Canyon”,
“Zion”, “Grand Teton”)
.take(3);
StepVerifier.create(nationalParkFlux)
.expectNext(“Yellowstone”, “Yosemite”, “Grand Canyon”)
.verifyComplete();

Flux nationalParkFlux = Flux.just(
“Yellowstone”, “Yosemite”, “Grand Canyon”,
“Zion”, “Grand Teton”)
.delayElements(Duration.ofSeconds(1))
.take(Duration.ofMillis(3500));
StepVerifier.create(nationalParkFlux)
.expectNext(“Yellowstone”, “Yosemite”, “Grand Canyon”)
.verifyComplete();

Flux nationalParkFlux = Flux.just(
“Yellowstone”, “Yosemite”, “Grand Canyon”,
“Zion”, “Grand Teton”)
.filter(np -> !np.contains(" "));
StepVerifier.create(nationalParkFlux)
.expectNext(“Yellowstone”, “Yosemite”, “Zion”)
.verifyComplete();

Flux animalFlux = Flux.just(
“dog”, “cat”, “bird”, “dog”, “bird”, “anteater”)
.distinct();
StepVerifier.create(animalFlux)
.expectNext(“dog”, “cat”, “bird”, “anteater”)
.verifyComplete();
MAPPING REACTIVE DATA

Flux playerFlux = Flux
.just(“Michael Jordan”, “Scottie Pippen”, “Steve Kerr”)
.map(n -> {
String[] split = n.split("\s");
return new Player(split[0], split[1]);
});
StepVerifier.create(playerFlux)
.expectNext(new Player(“Michael”, “Jordan”))
.expectNext(new Player(“Scottie”, “Pippen”))
.expectNext(new Player(“Steve”, “Kerr”))
.verifyComplete();

Flux playerFlux = Flux
.just(“Michael Jordan”, “Scottie Pippen”, “Steve Kerr”)
.flatMap(n -> Mono.just(n)
.map(p -> {
String[] split = p.split("\s");
return new Player(split[0], split[1]);
})
.subscribeOn(Schedulers.parallel())
);
List playerList = Arrays.asList(
new Player(“Michael”, “Jordan”),
new Player(“Scottie”, “Pippen”),
new Player(“Steve”, “Kerr”));
StepVerifier.create(playerFlux)
.expectNextMatches(p -> playerList.contains§)
.expectNextMatches(p -> playerList.contains§)
.expectNextMatches(p -> playerList.contains§)
.verifyComplete();
BUFFERING DATA ON A REACTIVE STREAM

Flux fruitFlux = Flux.just(
“apple”, “orange”, “banana”, “kiwi”, “strawberry”);

Flux<List> bufferedFlux = fruitFlux.buffer(3);

StepVerifier
.create(bufferedFlux)
.expectNext(Arrays.asList(“apple”, “orange”, “banana”))
.expectNext(Arrays.asList(“kiwi”, “strawberry”))
.verifyComplete();

Buffering values from a reactive Flux into non-reactive List collections seems counterproductive. But when you combine buffer() with flatMap(), it enables each of the List collections to be processed in parallel:
Flux.just(
“apple”, “orange”, “banana”, “kiwi”, “strawberry”)
.buffer(3)
.flatMap(x ->
Flux.fromIterable(x)
.map(y -> y.toUpperCase())
.subscribeOn(Schedulers.parallel())
.log()
).subscribe();

Flux fruitFlux = Flux.just(
“apple”, “orange”, “banana”, “kiwi”, “strawberry”);

Mono<List> fruitListMono = fruitFlux.collectList();

StepVerifier
.create(fruitListMono)
.expectNext(Arrays.asList(
“apple”, “orange”, “banana”, “kiwi”, “strawberry”))
.verifyComplete();

Flux animalFlux = Flux.just(
“aardvark”, “elephant”, “koala”, “eagle”, “kangaroo”);

Mono<Map<Character, String>> animalMapMono =
animalFlux.collectMap(a -> a.charAt(0));

StepVerifier
.create(animalMapMono)
.expectNextMatches(map -> {
return
map.size() == 3 &&
map.get(‘a’).equals(“aardvark”) &&
map.get(‘e’).equals(“eagle”) &&
map.get(‘k’).equals(“kangaroo”);
})
.verifyComplete();

Performing logic operations on reactive types
Flux animalFlux = Flux.just(
“aardvark”, “elephant”, “koala”, “eagle”, “kangaroo”);

Mono hasAMono = animalFlux.all(a -> a.contains(“a”));
StepVerifier.create(hasAMono)
.expectNext(true)
.verifyComplete();

Mono hasKMono = animalFlux.all(a -> a.contains(“k”));
StepVerifier.create(hasKMono)
.expectNext(false)
.verifyComplete();

Flux animalFlux = Flux.just(
“aardvark”, “elephant”, “koala”, “eagle”, “kangaroo”);

Mono hasAMono = animalFlux.any(a -> a.contains(“a”));

StepVerifier.create(hasAMono)
.expectNext(true)
.verifyComplete();

Mono hasZMono = animalFlux.any(a -> a.contains(“z”));
StepVerifier.create(hasZMono)
.expectNext(false)
.verifyComplete();
Spring MVC change to Spring WebFlux

@GetMapping("/recent")
public Iterable recentTacos() {
PageRequest page = PageRequest.of(
0, 12, Sort.by(“createdAt”).descending());
return tacoRepo.findAll(page).getContent();
}

@GetMapping("/recent")
public Flux recentTacos() {
return Flux.fromIterable(tacoRepo.findAll()).take(12);
}

@PostMapping(consumes=“application/json”)
@ResponseStatus(HttpStatus.CREATED)
public Taco postTaco(@RequestBody Taco taco) {
return tacoRepo.save(taco);
}
@PostMapping(consumes=“application/json”)
@ResponseStatus(HttpStatus.CREATED)
public Mono postTaco(@RequestBody Mono tacoMono) {
return tacoRepo.saveAll(tacoMono).next();
}

public interface TacoRepository
extends ReactiveCrudRepository<Taco, Long> {
}
@GetMapping("/{id}")
public Taco tacoById(@PathVariable(“id”) Long id) {
Optional optTaco = tacoRepo.findById(id);
if (optTaco.isPresent()) {
return optTaco.get();
}
return null;
}
@GetMapping("/{id}")
public Mono tacoById(@PathVariable(“id”) Long id) {
return tacoRepo.findById(id);
}
WORKING WITH RXJAVA TYPES

@GetMapping("/recent")
public Observable recentTacos() {
return tacoService.getRecentTacos();
}

@GetMapping("/{id}")
public Single tacoById(@PathVariable(“id”) Long id) {
return tacoService.lookupTaco(id);
}
Developing Reactive APIs

@Configuration
public class RouterFunctionConfig {
@Autowired
private TacoRepository tacoRepo;
@Bean
public RouterFunction<?> routerFunction() {
return route(GET("/design/taco"), this::recents)
Testing reactive controllers 279
.andRoute(POST("/design"), this::postTaco);
}
public Mono recents(ServerRequest request) {
return ServerResponse.ok()
.body(tacoRepo.findAll().take(12), Taco.class);
}
public Mono postTaco(ServerRequest request) {
Mono taco = request.bodyToMono(Taco.class);
Mono savedTaco = tacoRepo.save(taco);
return ServerResponse
.created(URI.create(
“http://localhost:8080/design/taco/” +
savedTaco.getId()))
.body(savedTaco, Taco.class);
}
}
Test Reactive Rest APIs

// Test Get Method
Taco[] tacos = {
testTaco(1L), testTaco(2L),
testTaco(3L), testTaco(4L),
testTaco(5L), testTaco(6L),
testTaco(7L), testTaco(8L),
testTaco(9L), testTaco(10L),
testTaco(11L), testTaco(12L),
testTaco(13L), testTaco(14L),
testTaco(15L), testTaco(16L)};
Flux tacoFlux = Flux.just(tacos);
TacoRepository tacoRepo = Mockito.mock(TacoRepository.class);
when(tacoRepo.findAll()).thenReturn(tacoFlux);
WebTestClient testClient = WebTestClient.bindToController(
new DesignTacoController(tacoRepo))
.build();
testClient.get().uri("/design/recent")
.exchange()
.expectStatus().isOk()
.expectBody()
.jsonPath(" " ) . i s A r r a y ( ) . j s o n P a t h ( " ").isArray() .jsonPath(" ").isArray().jsonPath("").isNotEmpty()
.jsonPath(" [ 0 ] . i d " ) . i s E q u a l T o ( t a c o s [ 0 ] . g e t I d ( ) . t o S t r i n g ( ) ) . j s o n P a t h ( " [0].id").isEqualTo(tacos[0].getId().toString()) .jsonPath(" [0].id").isEqualTo(tacos[0].getId().toString()).jsonPath("[0].name").isEqualTo(“Taco 1”).jsonPath(" [ 1 ] . i d " ) . i s E q u a l T o ( t a c o s [ 1 ] . g e t I d ( ) . t o S t r i n g ( ) ) . j s o n P a t h ( " [1].id") .isEqualTo(tacos[1].getId().toString()).jsonPath(" [1].id").isEqualTo(tacos[1].getId().toString()).jsonPath("[1].name")
.isEqualTo(“Taco 2”).jsonPath(" [ 11 ] . i d " ) . i s E q u a l T o ( t a c o s [ 11 ] . g e t I d ( ) . t o S t r i n g ( ) ) . j s o n P a t h ( " [11].id") .isEqualTo(tacos[11].getId().toString()) .jsonPath(" [11].id").isEqualTo(tacos[11].getId().toString()).jsonPath("[11].name").isEqualTo(“Taco 12”).jsonPath(" [ 12 ] " ) . d o e s N o t E x i s t ( ) . j s o n P a t h ( " [12]") .doesNotExist().jsonPath(" [12]").doesNotExist().jsonPath("[12]").doesNotExist();

// Test POST Method

TacoRepository tacoRepo = Mockito.mock(
TacoRepository.class);
Mono unsavedTacoMono = Mono.just(testTaco(null));
Taco savedTaco = testTaco(null);
savedTaco.setId(1L);
Mono savedTacoMono = Mono.just(savedTaco);
when(tacoRepo.save(any())).thenReturn(savedTacoMono);
WebTestClient testClient = WebTestClient.bindToController(
new DesignTacoController(tacoRepo)).build();
testClient.post()
.uri("/design")
.contentType(MediaType.APPLICATION_JSON)
.body(unsavedTacoMono, Taco.class)
.exchange()
.expectStatus().isCreated()
.expectBody(Taco.class)
.isEqualTo(savedTaco);

// Testing with a live server
@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)
public class DesignTacoControllerWebTest {
@Autowired
private WebTestClient testClient;
@Test
public void shouldReturnRecentTacos() throws IOException {
testClient.get().uri("/design/recent")
.accept(MediaType.APPLICATION_JSON).exchange()
.expectStatus().isOk()
.expectBody()
.jsonPath(" [ ? ( @ . i d = = ′ T A C O 1 ′ ) ] . n a m e " ) . i s E q u a l T o ( " C a r n i v o r e " ) . j s o n P a t h ( " [?(@.id == 'TACO1')].name") .isEqualTo("Carnivore") .jsonPath(" [?(@.id==TACO1)].name").isEqualTo("Carnivore").jsonPath("[?(@.id == ‘TACO2’)].name")
.isEqualTo(“Bovine Bounty”)
.jsonPath("$[?(@.id == ‘TACO3’)].name")
.isEqualTo(“Veg-Out”);
}
}
Consume Reactive APIs

Flux ingredients = WebClient.create()
.get()
.uri(“http://localhost:8080/ingredients”)
.retrieve()
.bodyToFlux(Ingredient.class);
ingredients.subscribe(i -> { …})

Flux ingredients = WebClient.create()
.get()
.uri(“http://localhost:8080/ingredients”)
.retrieve()
.bodyToFlux(Ingredient.class);
ingredients
.timeout(Duration.ofSeconds(1))
.subscribe(
i -> { … },
e -> {
// handle timeout error
})

//Handing errors
ingredientMono.subscribe(
ingredient -> {
// handle the ingredient data

},
error-> {
// deal with the error

});

Mono ingredientMono = webClient
.get()
.uri(“http://localhost:8080/ingredients/{id}”, ingredientId)
.retrieve()
.onStatus(HttpStatus::is4xxClientError,
response -> Mono.just(new UnknownIngredientException()))
.bodyToMono(Ingredient.class);
Java 9
jshell

无法用单个下划线作为变量名称

int _ = 3; // java9 or above , error
String a = Objects.requireNonNullElse(m,“Bc”); // 若m不为null,则a = m,若m为null,则a = “Bc”
-cp, -classpath, --class-path(Java9新增)
Multi-Release JAR Files

–release
–class-path instead of -classpath
–version instead of -version
–module-path option has a shortcut -p
更多,见jeps

Java8中,接口可以有静态方法的默认实现,例:

public interface Test {
public static void print() {
System.out.println(“interface print”);
}

default void pout() {System.out.println();
}

}
Java9中,可以支持private的静态方法实现。

public interface Test {
private static void print() {
System.out.println(“interface print”);
}

static void pout() {print();
}

}
Optional.ofNullable(date).orElseGet(() -> newDate()); // date为null,才会执行newDate()方法,否则不执行newDate()方法
Optional.ofNullable(date).orElse(newDate()); // 无论date是否为null,都会执行newDate()方法
Java7中,可以使用try-with-Resources

try(Resouce res = …) {
work with res
}
res.close()会被自动执行

例:

try (var in = new Scanner(new FileInputStream(“C:\Users\Young\Desktop\新建文件夹\1.tx.txt”), StandardCharsets.UTF_8);
var out = new PrintWriter(“C:\Users\Young\Desktop\新建文件夹\out.txt”, StandardCharsets.UTF_8)) {
while (in.hasNext()) {
out.println(in.next().toUpperCase());
}
}
in 和 out执行完毕后都会自动关闭资源

在Java9 中,你可以在try中预先声明资源
例:

public static void printAll(String[] lines, PrintWriter out) {
try (out) { // effectively final variable
for (String line : lines) {
out.println(line);
} // out.close() called here
}
}
StackWalker用法示例

public class App {
/**
* Computes the factorial of a number
*
* @param n a non-negative integer
* @return n! = 1 * 2 * . . . * n
*/
public static int factorial(int n) {
System.out.println(“factorial(” + n + “):”);
var walker = StackWalker.getInstance();
walker.forEach(System.out::println);
int r;
if (n <= 1) {
r = 1;
} else {
r = n * factorial(n - 1);
}
System.out.println("return " + r);
return r;
}

public static void main(String[] args) {try (var in = new Scanner(System.in)) {System.out.print("Enter n: ");int n = in.nextInt();factorial(n);}
}

}
Java 9 expands the use of the diamond syntax to situations where it was previously not accepted. For example , you can now use diamonds with anonymous subclasses.

ArrayList list = new ArrayList<>(){
@Override
public String get(int index) {
return super.get(index).replaceAll(".","*");
}
};
Java 10
无需定义变量类型,通过var关键字+初始化的值,可以推测出变量类型

var a = 2; // a表示int
var b = “hello”; // b 表示String
var date = new java.util.Date();
var obj = new Custome(); // 自定义对象
Java 11
String repeated = “Java”.repeat(3); // 三个Java字符串连接
JDK提供了jdeprscan 来检查你的代码是否使用了deprecated的方法

专题
Lambda Expression
Method Reference Equivalent Lambda Expression Notes
separator::equals x -> separator.equals(x) This is a method expression with an object and an instance method. The lambda parameter is passed as the explicit parameter of the method
String::trim x -> x.trim() This is a method expression with a class and an instance method. The lambda parameter becomes the explicit parameter of the method
String::concat (x, y) -> x.concat(y) Again, we have an instance method, but this time, with an explicit parameter. As before, the first lambda parameter becomes the implicit parameter, and the remaining ones are passed to the method
Integer::valueOf x -> Integer::valueOf(x) This is a method expression with a static method. The lambda parameter is passed to the static method
Integer::sum (x, y) -> Integer::sum(x, y) This is another static method, but this time with two parameters. Both lambda parameters are passed to the static method. The Integer.sum method was specifically created to be used as a method reference. As a lmbda, you could just write (x, y)->x + y
Integer::new x -> new Integer(x) This is a constructor reference. The lambda parameters are passed to the constructor
Integer[]::new n -> new Integer[n] This is an array constructor reference. The lambda paramter is the array length
Functional Interface Parameter Types Return Types Abstract Method Name Description Other Method
Runnable none void run Runs an action without arguments or return value
Supplier none T get Supplies a value of type T
Consumer T void accept Consumes a value of type T andThen
BiConsumer<T,U> T,U void accept Consumes value of types T and U andThen
Function<T,R> T R apply A function with argument of type T compose, andThen, identity
BiFunction<T,U,R> T,U R apply A function with arguments of types T and U andThen
UnaryOperator T T apply A unary operator on the type T compose, andThen, identity
BinaryOperator T,T T apply A binary operator on the type T andThen, maxBy, minBy
Predicate T boolean test A boolean-valued function and, or, negate, isEqual
BiPredicate<T,U> T,U boolean test A boolean-valued function with two argumnets and,or,negate
Functional interfaces for Primitive Types

p, q is int ,long double; P, Q is Int, Long, Double

Functional Interface Parameter Types Return Types Abstract Method Name
BooleanSupplier none boolean getAsBoolean
PSupplier none p getAsP
PConsumer p void accept
ObjPConsumer T,p void accept
PFunction p T apply
PToQFunction p q applyAsQ
ToPFunction T p applyAsP
ToPBiFunction<T,U> T,U p applyAsP
PUnaryOperator p p applyAsP
PBinaryOperator p,p p applyAsP
PPredicate p boolean test
Service Loaders
Proxies
Logging
Generic Programming
E for the element type of a collection
K and V for key and value type of a table
T(and the neighboring letters U and S, if neccessary) for “any type at all”
Pair a = new Pair<>(“A”, “B”);
Pair b = new Pair<>(1.1, 1.11);
System.out.println(a.getClass() == b.getClass()); // TRUE
in Java8

public static Pair makePair(Supplier constr) {
return new Pair<>(constr.get(), constr.get());
}

Pair p = Pair.makePair(String:new);
In general, there is no relationship between Pair and Pair, no matter how S and T are related.

BUT

var managerBuiddies = new Pair(ceo, cfo);
Pair<? extends Employee> buddies = managerBuddies;
Collections
Concurrency
Stream
Java 8

// 流操作
List list = new ArrayList<>();
list.add(1);
list.add(2);
list.parallelStream().filter(i -> i > 1).count();
list.stream().filter(i -> i > 1).count();
Stream words = Stream.of(contents.split(","));
// 创建流
var limits = new BigInteger(“1000”);
Stream integerStream = Stream.iterate(BigInteger.ZERO, n -> n.compareTo(limits) < 0, n -> n.add(BigInteger.ONE));
System.out.println(integerStream.count());
如果我们持有的iterable对象不是集合,那么可以通过下面的调用将其转换成一个流

StreamSupport.stream(iterable.spliterator(),false);
如果我们持有的是Iterator对象,并且希望得到一个由它的结果构成的流,那么可以使用下面的语句

StreamSupport.stream(Spliterators.spliteratorUnknowSize(iterator, Spliterator.ORDERED),false);
至关重要的是,在执行流的操作时,我们并没有修改流背后的集合。记住,流并没有收集其数据,数据一直存储在单独的集合中

Optional

String result = optionalString.orElse(""); // The wrapped string , or “” if none
String result = optionalString.orElseGet(() -> System.getProperty(“myapp.default”));
String result = optionalString.orElseThrow(IllegalStateException::new);
消费Optinal值

optionalValue.ifPresent(v -> result.add(v));
optionalValue.ifPresentOrElse(v -> System.out.println(“Found” + v),
()-> logger.warning(“no match”));
管道化Optional

Optional transformed = optionalString.filter(s -> s.length() >= 8).map(String::toUpperCase);
in Java9

// 如果optionalString的值存在,那么result为optionalString,如果值不存在,那么就会计算lambda表达式,并使用计算出来的结果
Optional transformed = optionalString.or(() -> alternatives.stream().findFirst());
深圳网站建设www.sz886.com

这篇关于Java各版本新增特性, Since Java 8的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891092

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。