langchain LCEL,prompt模块,outputparse输出模块

2024-04-10 10:36

本文主要是介绍langchain LCEL,prompt模块,outputparse输出模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

基本代码

prompt模块

prompt模版控制长度 

outputparse格式化输出


LangChain表达式语言,或者LCEL,是一种声明式的方式,可以轻松地将链条组合在一起

langchian 可以使用 通义千问,我们用通义千问,用法也要申请 api:通义千问API如何使用_模型服务灵积(DashScope)-阿里云帮助中心

然后再代码目录创建一个 .env 文件,用来保存 api-key,例如

DASHSCOPE_API_KEY=sk-xxxxxxxxxx

这样就可以用了,就不需要官网默认示例的 openai 了,那个比较麻烦。

基本代码

import os
from dotenv import load_dotenv
from langchain_community.llms import Tongyi
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParserload_dotenv('key.env')  # 指定加载 env 文件
key = os.getenv('DASHSCOPE_API_KEY')  # 获得指定环境变量
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]  # 获得指定环境变量model = Tongyi(temperature=1)
# 设定系统上下文,构建提示词
template = """请扮演一位资深的技术博主,您将负责为用户生成适合在微博发送的中文帖文。
请把用户输入的内容扩展成 140 字左右的文字,并加上适当的 emoji 使内容引人入胜并专业。"""# 创建提示词对象,用于显示给用户的最终提示
prompt = ChatPromptTemplate.from_messages([("system", template), ("human", "{input}")])# 通过 LCEL 构建调用链并执行得到文本输出
# StrOutputParser() 模型对象的输出转为字符串
chain = prompt | model | StrOutputParser()
res = chain.invoke({"input": "给大家推荐一本新书《LangChain实战》,让我们一起开始来学习 LangChain 吧!"})
print(res)

prompt模块

上面的提示词不带参数,我们使用 langchain 的 prompt 模块来做一个带参数的提示词

import os
from dotenv import load_dotenv
from langchain_community.llms import Tongyi
from langchain_core.prompts import ChatPromptTemplateload_dotenv('key.env')  # 指定加载 env 文件
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]  # 获得指定环境变量
prompt = ChatPromptTemplate.from_template("请编写一篇关于{topic}的中文小故事,不超过100字")
model = Tongyi(temperature=1)
chain = prompt | model
res = chain.invoke({"topic": "小白兔"})
print(res)

对话提示词模版

import os
from dotenv import load_dotenv
load_dotenv('key.env')  # 指定加载 env 文件
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]  # 获得指定环境变量from langchain_core.prompts import ChatPromptTemplatechat_template = ChatPromptTemplate.from_messages([("system", "You are a helpful AI bot. Your name is {name}."),("human", "Hello, how are you doing?"),("ai", "I'm doing well, thanks!"),("human", "{user_input}"),]
)
res = chat_template.format_messages(name="Bob", user_input="What is your name?")
print(res)

prompt模版控制长度 

示例选择器

可以根据用户输入的长度,输入较长选择更多示例,输入较短选择更少示例

import os
from dotenv import load_dotenv
load_dotenv('key.env')  # 指定加载 env 文件
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]  # 获得指定环境变量from langchain_core.prompts import PromptTemplate
from langchain_core.prompts import FewShotPromptTemplate
from langchain.prompts.example_selector import LengthBasedExampleSelector# 创建一些反义词输入输出的示例内容
examples = [{"input": "happy", "output": "sad"},{"input": "tall", "output": "short"},{"input": "energetic", "output": "lethargic"},{"input": "sunny", "output": "gloomy"},{"input": "windy", "output": "calm"},
]example_prompt = PromptTemplate(input_variables=["input", "output"],template="Input: {input}\nOutput: {output}",
)
example_selector = LengthBasedExampleSelector(examples=examples,example_prompt=example_prompt,# 设定期望的示例文本长度max_length=25
)
dynamic_prompt = FewShotPromptTemplate(example_selector=example_selector,example_prompt=example_prompt,# 设置示例以外部分的前置文本prefix="Give the antonym of every input",# 设置示例以外部分的后置文本suffix="Input: {adjective}\nOutput:\n\n",input_variables=["adjective"],
)# 当用户输入的内容比较少时,所有示例都足够被使用
print(dynamic_prompt.format(adjective="big"))# 当用户输入的内容足够长时,只有少量示例会被引用
long_string = "big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else"
print(dynamic_prompt.format(adjective=long_string))

 

outputparse格式化输出

使用 PydanticOutputParser 控制输出格式

from typing import Listfrom langchain_core.prompts import PromptTemplate
from langchain_community.llms.ollama import Ollama
from langchain.output_parsers import PydanticOutputParser
from langchain.pydantic_v1 import BaseModel, Fieldclass Actor(BaseModel):name: str = Field(description="name of an author")book_names: List[str] = Field(description="list of names of book they wrote")actor_query = "随机生成一位知名的作家及其代表作品"parser = PydanticOutputParser(pydantic_object=Actor)prompt = PromptTemplate(template="请回答下面的问题:\n{query}\n\n{format_instructions}\n如果输出是代码块,请不要包含首尾的```符号",input_variables=["query"],partial_variables={"format_instructions": parser.get_format_instructions()},
)input = prompt.format_prompt(query=actor_query)
print(input)model = Ollama(model="llama2-chinese:13b")
output = model(input.to_string())print(output)
parser.parse(output)

这篇关于langchain LCEL,prompt模块,outputparse输出模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890819

相关文章

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

多模块的springboot项目发布指定模块的脚本方式

《多模块的springboot项目发布指定模块的脚本方式》该文章主要介绍了如何在多模块的SpringBoot项目中发布指定模块的脚本,作者原先的脚本会清理并编译所有模块,导致发布时间过长,通过简化脚本... 目录多模块的springboot项目发布指定模块的脚本1、不计成本地全部发布2、指定模块发布总结多模

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit